Skip to main content

Abstract

It has been shown (see Chapter 2 and reference 1) that the theoretical stress to cause cleavage fracture in a brittle solid is of the order of E/10; that is, one-tenth of the Young’s modulus. The modulus of a brittle polymer is typically 3 GPa and so the theoretical strength of such a material should be 300 MPa. The measured fracture strengths of polymers are well below the theoretical value (typically 10–100 MPa), as is the case for many other materials. This shortfall in strength was recognised many years ago by Griffith2 who showed that the relatively low strength of a brittle solid could be explained by the presence of flaws which act as stress concentrators. This hypothesis has led to the development of a large body of experimental and theoretical work which is now termed fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly, A. (1966). Strong solids, Clarendon Press, Oxford.

    Google Scholar 

  2. Griffith, A. A. (1920). Phil. Trans. Roy. Soc., A221, 163.

    Google Scholar 

  3. Orowan, E. (1948). Repts. Prog. Phys., 12, 185.

    Article  Google Scholar 

  4. Irwin, G. R. (1964). Appl. Mats. Res., 3, 65.

    Google Scholar 

  5. Knott, J. F. (1973). Fundamentals of fracture mechanics, Butterworths, London.

    Google Scholar 

  6. Broek, D. (1974). Elementary engineering fracture mechanics, Noordhoff, Leyden.

    Google Scholar 

  7. Berry, J. P. (1961). J. Polym. Sci., 50, 107.

    Article  Google Scholar 

  8. Rivlin, R. S. & Thomas, A. G. (1953). J. Polym. Sci., 10, 291.

    Article  Google Scholar 

  9. Shafrin, E. G. (1976). In: Handbook of adhesives, Ed. by I. Skeist, Van Nostrand, New York, p. 67.

    Google Scholar 

  10. Lake, G. J. & Thomas, A. G. (1967). Proc. Roy. Soc., A300, 108.

    Google Scholar 

  11. Gent, A. N. & Kinloch, A. J. (1971). J. Polym. Sci., A2, 9, 659.

    Google Scholar 

  12. Andrews, E. H. & Kinloch, A. J. (1973). Proc. R. Soc., A332, 385.

    Google Scholar 

  13. Andrews, E. H. & Kinloch, A. J. (1973). Proc. R. Soc., A332, 401.

    Google Scholar 

  14. Gent, A. N. & Schultz, J. (1972). J. Adhesion, 3, 281.

    Article  Google Scholar 

  15. Williams, J. G. (1978). Adv. Polym. Sci., 27, 67.

    Article  Google Scholar 

  16. Greensmith, H. W. (1963). J. Appl. Polym. Sci., 7, 993.

    Article  Google Scholar 

  17. Lake, G. J. (1970). Yield, deformation and fracture of polymers, Conf. Proc., Phys. Institute, London, p. 5.3.

    Google Scholar 

  18. Rice, J. R. (1968). In: Fracture, an advanced treatise, Vol. 2, Ed. by H. Liebowitz, Academic Press, New York, p. 192.

    Google Scholar 

  19. Turner, C. E. (1979). In: Post-yield fracture mechanics, Ed. by D. G. H. Latzko, Applied Science Publishers Ltd., London, p. 23.

    Google Scholar 

  20. Chell, G. G. (1979). In: Developments in fracture mechanics—1, Ed. by G. G. Chell, Applied Science Publishers Ltd., London, p. 67.

    Google Scholar 

  21. Landes, J. D. & Begley, J. A. (1979). In: Post-yield fracture mechanics, Ed. by D. G. H. Latzko, Applied Science Publishers Ltd., London, p. 211.

    Google Scholar 

  22. Plati, E. & Williams, J. G. (1975). Polym. Eng. Sci., 15, 470.

    Article  Google Scholar 

  23. Sridharan, N. S. & Broutman, L. J. (1978). Toughening of plastics, Conf. Proc., Plastics and Rubber Inst., London, p. 19.1.

    Google Scholar 

  24. Hodgkinson, J. M. & Williams, J. G. (1981). J. Mater. Sci., 16, 50.

    Article  Google Scholar 

  25. Ahagon, A., Gent, A. N., Kim, H. J. & Kumagi, Y. (1975). Rubber Chem. Technol., 48, 896.

    Article  Google Scholar 

  26. Thomas, A. G. & Kadir, A. (1983). J. Polym. Sci. Polym. Phys. Ed..

    Google Scholar 

  27. Mohamed (Kadir), A. K. B. (1980). Crack propagation in rubbers, PhD Thesis, Queen Mary College, London, p. 116.

    Google Scholar 

  28. Andrews, E. H. (1974). J. Mater. Sci., 9, 887.

    Article  Google Scholar 

  29. Andrews, E. H. & Billington, E. W. (1976). J. Mater. Sci., 11, 1354.

    Article  Google Scholar 

  30. Andrews, E. H. & Fukahori, Y. (1977). J. Mater. Sci., 12, 1307.

    Article  Google Scholar 

  31. Andrews, E. H. (1979). Makromol Chem. Suppl., 2, 189.

    Article  Google Scholar 

  32. Westergaard, H. M. (1939). J. Appl. Mech. A June, 46.

    Google Scholar 

  33. Sih, G. C. (1973). Handbook of stress-intensity factors for researchers and engineers, Lehigh Univ., Bethlehem, USA.

    Google Scholar 

  34. Tada, H., Paris, P. & Irwin, G. R. (1973). The stress analysis of cracks handbook, Del Research Corp., Hellertown, USA.

    Google Scholar 

  35. Rooke, D. P. & Cartwright, D. J. (1976). Compendium of stress-intensity factors, HMS., London.

    Google Scholar 

  36. Irwin, G. R. & Paris, P. C. (1971). In: Fracture, an advanced treatise—Vol. 3, Ed. by H. Liebowitz, Academic Press, New York, p. 13.

    Google Scholar 

  37. Wells, A. A. (1963). Brit. Welding J., 10, 563.

    Google Scholar 

  38. Dugdale, D. S. (1960). J. Mech. Phys. Solids, 8, 100.

    Article  Google Scholar 

  39. Barenblatt, G. I. (1962). Adv. Appl. Mechs., 7, 56.

    Google Scholar 

  40. Williams, J. G. (1980). Stress analysis of polymers, Ellis Horwood, Chichester.

    Google Scholar 

  41. Corten, H. T. (1972). In: Fracture, an advanced treatise—Vol. 7, Ed. by H. Liebowitz, Academic Press, New York, p. 675.

    Google Scholar 

  42. ASTM-E 399-78, Plane-strain fracture toughness of metallic materials.

    Google Scholar 

  43. Williams, J. G. & Parvin, M. (1975). Int. J. Fract., 11, 963.

    Article  Google Scholar 

  44. Williams, J. G. & Parvin, M. (1975). J. Mater. Sci., 10, 1883.

    Article  Google Scholar 

  45. Mai, Y. W. & Williams, J. G. (1977). J. Mater. Sci., 12, 1376.

    Article  Google Scholar 

  46. Gledhill, R. A. & Kinloch, A. J. (1979). Prop. Explos., 4, 73.

    Article  Google Scholar 

  47. Hobbs, S. Y. & Bopp, R. C. (1980). Polymer, 21, 559.

    Article  Google Scholar 

  48. Gledhill, R. A. & Kinloch, A. J. (1981). J. Spacecraft Rockets, 18, 333.

    Article  Google Scholar 

  49. Fraser, R. A. W. & Ward, I. M. (1978). Polymer, 19, 220.

    Article  Google Scholar 

  50. Pitman, G. L. & Ward, I. M. (1979). Polymer, 20, 895.

    Article  Google Scholar 

  51. Hine, P. J., Duckett, R. A. & Ward, I. M. (1981). Polymer, 22, 1745.

    Article  Google Scholar 

  52. Bluhm, J. I. (1961). ASTM Proc., 61, 1325.

    Google Scholar 

  53. Lake, G. J., Lindley, P. B. & Thomas, A. G. (1979). In: Fracture, Ed. by L. Averbach, Chapman-Hall, London, p. 493.

    Google Scholar 

  54. Thomas, A. G. (1960). J. Appl. Polym. Sci., 3, 168.

    Article  Google Scholar 

  55. Brown, W. F. & Srawley, J. E. (1966). Plane-strain crack toughness testing of high strength metallic materials, ASTM, STP 410, p. 12.

    Google Scholar 

  56. Young, R. J. & Beaumont, P. W. R. (1976). J. Mater. Sci., 11, 1113.

    Article  Google Scholar 

  57. Mostovoy, S., Crosley, P. B. & Ripling, E. J. (1967). J. Mater., 2, 661.

    Google Scholar 

  58. Crosley, P. B., Mostovoy, S. & Ripling, E. J. (1971). Eng. Fract. Mechs., 3, 421.

    Article  Google Scholar 

  59. Young, R. J. (1979). In: Developments in polymer fracture—1, Ed. by E. H. Andrews, Applied Science Publishers Ltd., London, p. 183.

    Google Scholar 

  60. Kinloch, A. J. & Shaw, S. J. (1981). In: Developments in adhesives—2, Ed. by A. J. Kinloch, Applied Science Publishers Ltd., London, p. 83.

    Google Scholar 

  61. Williams, J. G. (1981). Phil. Trans. R. Soc. London, A299, 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kinloch, A.J., Young, R.J. (1995). Fracture Mechanics. In: Fracture Behaviour of Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1594-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1594-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1596-6

  • Online ISBN: 978-94-017-1594-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics