Skip to main content

Probabilistic Learning Models

  • Chapter
Book cover Foundations of Bayesianism

Part of the book series: Applied Logic Series ((APLS,volume 24))

Abstract

The purpose of this review is to provide a brief outline of some uses of Bayesian methods in artificial intelligence, specifically in the area of neural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Amari et al,1996] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Pmcessing Systems 8,pages 757–763. MIT Press, 1996.

    Google Scholar 

  2. H. Attias and C. E. Schreiner. Blind source separation and deconvolu- tion: The dynamic component analysis algorithm. Neural Computation, 10 (6): 1373–1424, 1998.

    Article  Google Scholar 

  3. David Barber and Christopher M. Bishop. Ensemble learning for multi-layer networks. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 395–401. MIT Press, 1998.

    Google Scholar 

  4. A. R. Barron. Approximation and estimation bounds for artificial neural networks. Machine Learning, 14: 115–133, 1994.

    Google Scholar 

  5. P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In B. Schölkopf, C. J. C. Burgess, and A. J. Smola, editors, Advances in Kernel Methods—Support Vector Learning, pages 43–54. MIT Press, 1999.

    Google Scholar 

  6. A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7 (6): 1129–1159, 1995.

    Article  Google Scholar 

  7. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

    Google Scholar 

  8. Bishop, 1995b] Chris M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7(1):108–116, 1995

    Google Scholar 

  9. C. M. Bishop and C. Legleye. Estimating conditional probability densities for periodic variables. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems 7, pages 641–648. MIT Press, 1995.

    Google Scholar 

  10. Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. Developments of the generative topographic mapping. Neurocomputing,21:203–224,1998.

    Google Scholar 

  11. Bishop et al,1998b1 Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams GTM: The generative topographic mapping. Neural Computation,10(1):215–234,1998.

    Google Scholar 

  12. Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex Systems, 5: 603–643, 1991.

    Google Scholar 

  13. Zehra Cataltepe, Yaser S. Abu-Mostafa, and Malik Magdon-Ismail. No free lunch for early stopping. Neural Computation, 11(4):995–1009,1999

    Google Scholar 

  14. Olivier Chapelle and Vladimir Vapnik. Model selection for support vector machines. In S. A. Solla, T. K. Leen, and K-B Müller, editors, Advances in Neural Information Processing Systems 12, pages 230–236. MIT Press, 2000.

    Google Scholar 

  15. P. Common. Independent component analysis: A new concept. Signal Processing, 36: 287–314, 1994.

    Article  Google Scholar 

  16. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, 2000.

    Google Scholar 

  17. Mark Gibbs and David J. C. MacKay. Efficient implementation of Gaussian processes. Technical report, Cavendish Laboratory, Cambridge, 1997.

    Google Scholar 

  18. G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Sicence Society (Amherst, 1986), pages 1–12. Hillsdale: Erlbaum, 1986.

    Google Scholar 

  19. G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description length of the weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, pages 5–13, 1993.

    Chapter  Google Scholar 

  20. K. Hornik. Some new results on neural network approximation. Neural Computation, 6 (8): 1069–1072, 1993.

    Google Scholar 

  21. H. Jeffreys. Theory of Probability. Oxford, third edition, 1961.

    Google Scholar 

  22. Peter K. Kitanidis. Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resources Research, 22 (4): 499–507, 1986.

    Article  Google Scholar 

  23. T. Kohonen. Self-Organizing Maps. Springer, 1995.

    Google Scholar 

  24. Nhu D. Le and James V. Zidek. Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging. Journal of Multivariate Analysis, 43: 351–374, 1992.

    Article  Google Scholar 

  25. Bayesian interpolation. Neural Computation, 4 (3): 415–447, 1992.

    Google Scholar 

  26. A practical Bayesian framework for backpropagation networks. Neural Computation, 4 (3): 448–472, 1992.

    Google Scholar 

  27. MacKay. In G. Heidbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, Dordrecht, 1994. Kluwer.

    Google Scholar 

  28. Developments in probabilistic modelling with neural networks—ensemble learning. In Neural Networks: Artificial Intelligence and Industrial Applications, pages 191–198. Springer, 1995.

    Google Scholar 

  29. Matheron. La Théorie des Variables Regionalisées et ses Applications. Masson, 1965.

    Google Scholar 

  30. J. W. Miskin and D. J. C. MacKay. Ensemble learning for blind source separation. In S. Roberts and R. Everson, editors, Independent Component Analysis: Principles and Practice. Cambridge University Press, 2001.

    Google Scholar 

  31. Radford M. Neal. Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Technical Report CRG-TR-92–1, Department of Computer Science, University of Toronto, April 1992.

    Google Scholar 

  32. Radford M. Neal. Priors for infinite networks. Technical Report CRG-TR-94–1, Department of Computer Science, University of Toronto, 1994.

    Google Scholar 

  33. Radford M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics No. 118. Springer-Verlag, 1996.

    Google Scholar 

  34. Regression and classification using Gaussian process priors. In J. M. Bernardo et al, editor, Bayesian Statistics 6, pages 475–501. Oxford University Press, 1998.

    Google Scholar 

  35. B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

    Google Scholar 

  36. Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural Computation, 11 (2): 305–345, 1999.

    Article  Google Scholar 

  37. D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986.

    Google Scholar 

  38. Matthias Seeger. Bayesian model selection for Support Vector machines, Gaussian processes and other kernel classifiers. In S. A. Solla, T. K. Leen, and K-B Müller, editors, Advances in Neural Information Processing Systems 12, pages 603–609. MIT Press, 2000.

    Google Scholar 

  39. A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. John Wiley & Sons, 1977.

    Google Scholar 

  40. Michael E. Tipping. The relevance vector machine. In S. A. Solla, T. K. Leen, and K.-B. Müller, editors, Advances in Neural Information Processing Systems 12, pages 652–658. MIT Press, 2000.

    Google Scholar 

  41. Trecate et al,1999] Giancarlo Ferrari Trecate, C. K. I. Williams, and M. Opper. Finite-dimensional approximation of Gaussian processes. In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11,pages 218–224. MIT Press, 1999.

    Google Scholar 

  42. V. Vapnik. Estimation of Dependences Based on Empirical Data. Nauka, Moscow, 1979. English translation: Springer Verlag, New York, 1982.

    Google Scholar 

  43. Vapnik, 1998] Vladimir Vapnik. Statistical Learning Theory John Wiley, 1998.

    Google Scholar 

  44. V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12 (9): 2013–2036, 2000.

    Article  Google Scholar 

  45. Vladimir N. Vapnik and Sayan Mukherjee. Support vector method for multivariate density estimation. In S. A. Solla, T. K. Leen, and K-B Müller, editors, Advances in Neural Information Processing Systems 12, pages 659–664. MIT Press, 2000.

    Google Scholar 

  46. Vapnik et al,1997] Vladimir Vapnik, Steven E. Golowich, and Alex Smola. Support vector method for function approximation, regression estimation, and signal processing. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281–287. MIT Press, 1997.

    Google Scholar 

  47. N. Wiener. Extrapolation, Interpolation, and Smoothing of Times Series. MIT Press, 1949.

    Google Scholar 

  48. Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10 (5): 1203–1216, 1998.

    Article  Google Scholar 

  49. Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for regression. In Michael C. Mozer David S. Touretzky and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514–520. The MIT Press, 1996.

    Google Scholar 

  50. Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel machines. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. The MIT Press, 2001.

    Google Scholar 

  51. P. M. Williams. A Marquardt algorithm for choosing the step-size in backpropagation learning with conjugate gradients. Cognitive Science Research Paper CSRP 229, University of Sussex, February 1991.

    Google Scholar 

  52. P. M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7 (1): 117–143, 1995.

    Article  Google Scholar 

  53. P. M. Williams. Using neural networks to model conditional multivariate densities. Neural Computation, 8 (4): 843–854, 1996.

    Article  Google Scholar 

  54. P. M. Williams. Modelling seasonality and trends in daily rainfall data. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 985–991. The MIT Press, 1998.

    Google Scholar 

  55. P. M. Williams Matrix logarithm parametrizations for neural network covariance models. Neural Networks, I2 (2): 299–308, 1999.

    Google Scholar 

  56. R. C. Williamson, J. Shawe-Taylor, P. L. Bartlett and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory,44(5):1926–1940,1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Williams, P.M. (2001). Probabilistic Learning Models. In: Corfield, D., Williamson, J. (eds) Foundations of Bayesianism. Applied Logic Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1586-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1586-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5920-8

  • Online ISBN: 978-94-017-1586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics