Skip to main content

Abstract

Many aquatic molluscs are pests; certain snails act as intermediate hosts of human and animal diseases and zebra mussels foul water supply systems. However, no biological pesticides are available for use against these pests. In contrast, biological pesticides are available for some terrestrial molluscs that are pests of agriculture, horticulture and domestic gardens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, K. L. 1989. Slug pests of dry beans in Central America. In “Slugs and Snails in World Agriculture” ( I. F. Henderson, Ed.), pp. 85–90. British Crop Protection Council, Farnham.

    Google Scholar 

  • Arias, R. O. and Crowell, H. H. 1963. A contribution to the biology of the gray garden slug. Bull. Southern Calif. Acad. Sci. 62, 83–97.

    Google Scholar 

  • Baker, G. H. 1989. Damage, population dynamics, movement and control of pest helicid snails in Southern Australia. In “Slugs and Snails in World Agriculture” ( I. F. Henderson, Ed.), pp. 175–185. British Crop Protection Council, Famham.

    Google Scholar 

  • Barry, B. D. 1969. Evaluation of chemicals for the control of slugs on field corn in Ohio. J. Econ. Entomol. 62, 1277–1299.

    CAS  Google Scholar 

  • Barker, G. M. 1989. Slug problems in New Zealand pastoral agriculture. In “Slugs and Snails in World Agriculture” ( I. F. Henderson, Ed.), pp. 59–68. British Crop Protection Council, Farnham.

    Google Scholar 

  • Bedding, R.A., (1984). Large scale production, storage and transport of the insect parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Ann. Appl. Biol. 104, 117–120.

    Article  Google Scholar 

  • Begley, J. W. 1990. Efficacy against insects in habitats other than soil. In “Entomopathogenic Nematodes in Biological Control” ( R. Gaugler, and H. K. Kaya, Eds.), pp. 215–231. CRC Press, Boca Raton.

    Google Scholar 

  • Brooks, W. M. 1968. Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39, 205–276.

    Google Scholar 

  • Byers, R. A. and Bierlin, D. L. 1984. Continuous alfalfa-invertebrate pests during establishment. J. Econ. Entomol. 77, 1500–1503.

    CAS  Google Scholar 

  • Byers, R. A. and Calvin, D. D. 1994. Economic injury levels to field corn from slug (Stylommatophora: Agrolimacidae) feeding. J. Econ. Entomol. 87, 1345–1350.

    Google Scholar 

  • Cameron, R. A. D., Evesham, B., and Jackson, N. 1983. A field key to slugs of the British Isles. Field Stud. 5, 807–824.

    Google Scholar 

  • Chichester, L. F. and Getz, L. L. 1973. The terrestrial slugs of northeastern North America. Sterkiana 50, 1142.

    Google Scholar 

  • Clements, R. O. and Murray, P. J. 1991. Comparison between defined-area slug traps and other methods of trapping slugs in cereal fields. Crop Protect. 10, 152–154.

    Article  Google Scholar 

  • Coupland, J. B. 1995. Susceptibility of helicid snails to isolates of the nematode Phasmarhabditis hermaphrodita from Southern France. J. Invertebr. Pathol. 66, 207–208.

    Article  Google Scholar 

  • Dean, W. W., Mead, A. R., and Northey, W. T. 1970. Aeromons liquefaciens in the giant African snail Achatinafulica. J. Invertebr. Pathol. 16, 346–351.

    Article  CAS  Google Scholar 

  • Ducklow, H. W., Tarraza, J. R., and Mitchell, R. 1980. Experimental pathogenicity of Vibrio parahaeorolyticus for the schistosome-bearing snail Biomphalaria glabrata. Can. J. Microbiol. 26, 503–506.

    Article  CAS  Google Scholar 

  • Ester, A. and Geelen, P. M. T. M. 1996. Integrated control of slugs in sugar beet crop growing in a rye cover crop. In “Slugs and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 445–450. British Crop Protection Council, Farnham.

    Google Scholar 

  • Ferguson, C. M., Barrat, B. I. P., and Jones, P. A. 1989. A new technique for estimating density of the field slug, Deroceras reticulatuin (Muller). In “Slugs and Snails in World Agriculture” ( I. F. Henderson, Ed.), pp. 331–337. British Crop Protection Council, Famham.

    Google Scholar 

  • Ferguson, C. M. and Hanks, C. B. 1990. Evaluation of defined-area trapping for estimating the density of the field slug, Deroceras reticulatura (Muller). Ann. Appl. Biol. 117, 451–454.

    Article  Google Scholar 

  • Francois, E., Riga, A., and Moens, R. 1965. Estimation des populations de Agriolimax reticulatus Muller au moyen de la technique de marquage au radiophosphore 32P, et recapture. Parasitica 24, 63–78.

    Google Scholar 

  • Fretter, V. 1952. Experiments with 32P and 131I on species of Helix, Arion and Agriolimax. Qtly. J. Microsc. Sci. 93, 133–146.

    Google Scholar 

  • Glen, D. M., Wilson, M. J., Pearce, J. D., and Rodgers, P. B. 1994. Discovery and investigation of a novel nematode parasite for biological control of slugs. In “Proceedings of the 1994 Brighton Crop Protection Conference–Pests and Diseases”, pp. 617–625. British Crop Protection Council, Famham.

    Google Scholar 

  • Glen, D. M., Wilson, M. J., Hughes, L. A., Cargeeg, P., and Hajjar, A. 1996. Exploring and exploiting the potential of the rhabditid nematode Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. In “Slug and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 271–280. British Crop Protection Council, Farnham.

    Google Scholar 

  • Glen, D. M. and Wiltshire, C. W. 1986. Estimating slug populations from bait-trap catches. In “Proceedings of the 1986 British Crop Protection Conference–Pests and Diseases”, pp. 1151–1158. British Crop Protection Council, Famham.

    Google Scholar 

  • Glen, D. M., Wiltshire, C. W., and Butler, R. C. 1991. Slug population changes following molluscicide treatment in relation to distance from edge of treated area. Crop Protect. 10, 408–412.

    Article  Google Scholar 

  • Godan, D. 1983. “Pest Slugs and Snails”, Springer Verlag, Berlin.

    Book  Google Scholar 

  • Halwart, M. 1994. The golden apple snail Pomacea canaliculata in Asian rice farming systems: present impact and future threat. Int. J. Pest. Manag. 40, 199–206.

    Article  Google Scholar 

  • Hammond, R. B. 1996. Conservation tillage and slugs in the U.S. corn belt. In “Slug and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 31–38. British Crop Protection Council, Farnham.

    Google Scholar 

  • Hogan, J. M. and Steele, G. R. 1986. Dye-marking slugs. J. Mollusc. Stud. 52, 138–143.

    Article  Google Scholar 

  • Hommay, G. M., and Briard, P. 1988 Apport du piegeage dans le suivi des peuplements de limaces en grande culture. Haliotes 18, 55–74.

    Google Scholar 

  • Hunter, P. J. 1968. Studies on slugs of arable ground: I. sampling methods. Malacologia 6, 370–389.

    Google Scholar 

  • Jaworska, M. 1993. Laboratory infection of slugs (Gastropoda: Pulmonata) with entomopathogenic nematodes (Rhabditida:Nematoda). J. Invertebr. Pathol. 61, 223–224.

    Article  Google Scholar 

  • Jennings, T. J. and Barkham, J. P. 1975. Slug populations in mixed deciduous woodland. Oecologia (Berlin) 20, 279–286.

    Article  Google Scholar 

  • Kaya, H. K., and Stock, S. P. 1997. Techniques in insect nematology. In “Manual of Techniques in Insect Pathology” ( L. Lacey, Ed.), pp 281–324. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Kemey, M. P., and Cameron, R. A. D. 1979. “A Field Guide to the Land Snails of Britain and N.W. Europe”. Collins, London.

    Google Scholar 

  • Li, P. S., Deng, C. S., Zhang, S. G., and Yang, H. W. 1986. Preliminary tests on Steinernema glaseri infecting the snail, Oncomelania hupensis, an intermediate host of Schistosoma japonica. Chinese J. Biol. Contr. 2, 50–52.

    Google Scholar 

  • Mead, A. R. 1961. “The Giant African Snail: A problem in Economic Malacology,” Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Mengert, H. 1953. Nematoden und Schnecken. Z. Morpho!. Oekol. Tiere. 41, 311–349.

    Article  Google Scholar 

  • Moens, R., François, E., Riga, A., and van den Bruel, W. E. 1967. A mechanical barrier against terrestrial gastropods. Parasitica 23, 22–27.

    Google Scholar 

  • Moens, R., François, E., Riga, A., and van den Bruel, W. E. 1965. Les radioisotopes en écologie animale. Première informations sur le comportement de Agriolimax reticulatus Muller. Med. Landbouw, Opzoekings. Staat Gent 3, 1810–1823.

    Google Scholar 

  • Morand, S. and Hommay, G. 1990. Redescription de Agfa flexilis Dujardin, 1845 (Nematoda: Agfidae) parasite de l’appareil génital de Limax cinereoniger Wolf, 1803 (Gastropoda, Limacidae). Syst. Parasitol. 15, 127–132

    Google Scholar 

  • Morand, S. and Petter, A. J. 1986. Nemhelix bakeri n. gen. n. sp. (Nematoda, Cosmocercidae) parasite de l’appareil génital de Helix aspersa Müller (Gastropoda, Helicidae). Can. J. Zool. 64, 2008–2011.

    Google Scholar 

  • Parrella, M. P., Robb, K. L., and Morishita, P. 1985. Snails and slugs in ornamentals. Calif. Agric., Jan-Feb, 6–8.

    Google Scholar 

  • Port, C. M. and Port, G. R. 1986. The biology and behavior of slugs in relation to crop damage and control. Agric. Zool. Rev. 1, 255–299.

    Google Scholar 

  • Richter, K. O. 1976. A method for individually marking slugs. J. Mollusc. Stud. 42, 146–151.

    Google Scholar 

  • Rollo, C. D., Vertinsky, I. B., Wellington, W. G., and Kanetkar, V. K. 1983. Alternative risk-taking styles: The case of time-budgeting strategies of terrestrial gastropods. Res. Pop. Ecol. (Kyoto) 25, 321–335.

    Article  Google Scholar 

  • Sakovich, N. J. 1996. M integrated pest management (IPM) approach to the control of the brown garden snail (Helix aspersa) in California citrus orchards. In “Slug and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 283–288. British Crop Protection Council, Farnham.

    Google Scholar 

  • Singer, S., VanFleet, A., Viel, J. J., and Genevese, E. E. 1997. Biological control of the zebra mussel Dreissena polymorpha and the snail Biomphalaria glabrata, using Gramicidin S and D and molluscicidal strains of Bacillus. J. Ind. Microbiol. Biotechnol. 18, 226–231.

    Article  CAS  Google Scholar 

  • South, A. 1964. Estimation of slug populations. Ann. Appl. Biol. 53, 251–258.

    Article  Google Scholar 

  • South, A. 1992. “Terrestrial Slugs, Biology, Ecology and Control.” Chapman and Hall, London.

    Book  Google Scholar 

  • Speiser, B. and Andermatt, M. 1996. Field trials with Phasmarhabditis hermaphrodita in Switzerland. In “Slug and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 419–424. British Crop Protection Council, Farnham.

    Google Scholar 

  • Symondson, W. O. C. 1990. Chemical confinement of slugs; an alternative to electric fences. J. Mollusc. Stud. 59, 259–261.

    Article  Google Scholar 

  • Terytze, K. and Hoffman, G. 1986. Die wirkung von bakterienpraparaten (Bacillus thuringiensis Berliner) zur Bekämpfung von Nacktshnecken in gerbera-bestanden. Arch. Phytopathol. Pflanzenshutz, Berlin 22, 361–363.

    Google Scholar 

  • Thomas, D. C. 1944. Discussion on slugs. H. Field sampling for slugs. Ann. app!. Biol. 31, 160–164.

    Article  Google Scholar 

  • Trevet, I. W., and Esslemont, J. M. 1938. A fungous parasite of the eggs of the gray field slug. J. Quecket Microscopical Club 4th series 1, 1–3.

    Google Scholar 

  • Wilson, M. J., Glen, D. M., and George, S. K. 1993a. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontr. Sci. Technol. 3, 503–511.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Butler, R. C. 1993b. Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs. Biocontr. Sct. Technol. 3, 513–521.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., Pearce, J. D., and Wiltshire, C. W. 1994a. Biological control of slugs in winter wheat using the rhabditid nematode, Phasmarhabditis hermaphrodita. Ann. Appl. Biol. 125, 377–390.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Wiltshire, C. W. 1994b. Mini-plot field experiments using the rhabditid nematode, Phasmarhabditis hermaphrodita, for biocontrol of slugs. Biocontr. Sci. Technol. 4, 103–113.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., Hughes, L. A., Pearce, J. D. and Rodgers, P. B. 1994c. Laboratory tests of the potential of entomopathogenic nematodes for the control of field slugs (Deroceras reticulatum). J. Invertebr. Pathol. 64, 182–187.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Hughes, L. A. 1995a. Biocontrol of slugs in protected lettuce using the rhabditid nematode Phasmarhabditis hermaphrodita. Biocontr. Sci. Technol. 5, 233–242.

    Article  Google Scholar 

  • Wilson, M. J., Glen, D. M., George, S. K., and Pearce, J. D. 1995b. Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. Fund. AppL Nematol. 18, 419–425.

    Google Scholar 

  • Wilson, M. J., Hughes, L. A., and Glen, D. M. 1995c. Developing strategies for the nematode, Phasmarhabditis hermaphrodita, as a biocontrol agent for slugs in integrated crop management systems. In “Integrated Crop Protection: Towards Sustainability” ( R. G. McKinlay, and D. Atkinson, Eds.), pp. 33–40. British Crop Protection Council, Farnham

    Google Scholar 

  • Wilson, M. J., Glen, D. M., Pearce, J. D., and Rodgers, P. B. 1995d. Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita with different bacteria in solid and liquid phase. Fund. Appl. Nematol. 18, 159–166.

    Google Scholar 

  • Wilson, M. J., Hughes, L. A., Harnacher, G. M., Barahona, L. D., and Glen, D. M. 1996. Effects of soil incorporation on the efficacy of the rhabditid nematode Phasmarhabditis hermaphrodita as a biological control agent for slugs. Ann. AppL Biol. 128, 117–126.

    Article  Google Scholar 

  • Young, A. G., Port, G. R., Craig, A. D., James, D. A., and Green, T. 1996. The use of refuge traps in assessing risk of slug damage: a comparison of trap material and bait. In “Slug and Snail Pests in Agriculture” ( I. F. Henderson, Ed.), pp. 133–140. British Crop Protection Council, Farnham.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilson, M.J., Gaugler, R. (2000). Terrestrial Mollusc Pests. In: Lacey, L.A., Kaya, H.K. (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1547-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1547-8_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1549-2

  • Online ISBN: 978-94-017-1547-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics