Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 398))

  • 654 Accesses

Abstract

This chapter presents existence results for the “nonresonant” singular boundary value problem

$$ \left\{ \begin{gathered} \frac{1}{{p(t)}}(p(t)y'(t))' + \mu q(t)y(t) = f(t,y(y)){\text{ a}}{\text{.e}}{\text{. on [0,1]}} \hfill \\ {\text{li}}{{\text{m}}_{t \to 0}} + p(t)y'(t) = y(1) = 0 \hfill \\ \end{gathered} \right.\ $$
(1.1)

where λ m −1µ ≤ λ m on [0,1] (or a more general condition described in section 11.2) with λ m −1 < µ < λ m on a subset of [0,1] of positive measure; here λ m , m =0,1, ... is the (m + 1)st eigenvalue (described in more detail later) of

$$\left\{ \begin{gathered}Lu = \lambda u{\text{ a}}{\text{.e}}{\text{. on [0,1]}} \hfill \\{\text{li}}{{\text{m}}_{t \to {0^ + }}}p(t)u'(t) = u(1) = 0 \hfill \\ \end{gathered} \right.]$$
(1.2)

where \(Lu = - \frac{1}{{pq}}(pu')'\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.V.Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964.

    Google Scholar 

  2. M.M.Chawla and P.N.Shivakumar, On the existence of solutions of a class of singular nonlinear two point boundary value problems, J. Comp. Appt. Math., 19 (1987), 379–388.

    MathSciNet  MATH  Google Scholar 

  3. N.Dunford and J.T.Schwartz, Linear operators, Interscience Pub1. Inc., Wiley, New York, 1958.

    Google Scholar 

  4. M.A. El Gebeily, A. Boumenir and A.B.M. Elgindi, Existence and uniqueness of solutions of a class of two-point singular nonlinear boundary value problems, J. Comp. Appl. Math., 46 (1993), 345–355.

    MATH  Google Scholar 

  5. W.N.Everitt, M.K.Kwong and A.Zettl, Oscillations of eigenfunctions of weighted regular Sturm Liouville problems, J.London Math. Soc., 27 (1983), 106–120.

    MathSciNet  MATH  Google Scholar 

  6. A.Fonda and J.Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. Royal Soc. Edinburgh, 112A (1989), 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  7. P.Habets and G.Metzen, Existence of periodic solutions of Duffing equations, Jour. Dif. Eq., 78 (1989), 1–32.

    Article  MATH  Google Scholar 

  8. L.V.Kantorovich and G.P.Akilov, Functional analysis, Pergamon Press, Oxford, 1982.

    Google Scholar 

  9. J.Mawhin and W.Omano, Two point boundary value problems for nonlinear perturbations of some singular linear differential equations at resonance,, Comm. Math. Univ. Carolinae, 30 (1989), 537–550.

    MATH  Google Scholar 

  10. J.Mawhin and W.Omano, Bounded nonlinear perturbations of singular boundary value problems at resonance Bull. Cl. Sci. Acad. Roy. Belgique, 6 (1991), 343–356.

    Google Scholar 

  11. J.Mawhin and J.R.Ward, Nonuniform nonresonance conditions at the first two eigenvalues for periodic solutions of forced Liénard and Duffing equations, Rocky M. J. Math., 112 (1982), 643–654.

    MathSciNet  Google Scholar 

  12. J.Mawhin and J.R.Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math., 41 (1983), 337–351.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.Omari and F.Zanolin, Nonresonance conditions on the potential for a second order periodic boundary value problem, Proc. Amer. Math. Soc., 117 (1993), 125–135.

    MathSciNet  MATH  Google Scholar 

  14. D.O’Regan, Theory of singular boundary value problems, World Scientific Press, Singapore, 1994.

    Google Scholar 

  15. D.O’Regan, Existence theory for nonresonant singular boundary value problems, Proc. Edinburgh Maths. Soc., 38 (1995), 431–447.

    Article  MATH  Google Scholar 

  16. D.O’Regan, Nonresonant nonlinear singular problems in the limit circle case, Jour. Math. Anal. Appl., 197 (1996), 708–725.

    Article  MATH  Google Scholar 

  17. I.Stakgold, Greens functions and boundary value problems, John Wiley and Sons, New York, 1979.

    Google Scholar 

  18. K.Yosida, Functional analysis, Springer Verlag, Berlin, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Regan, D. (1997). Nonresonance problems in the limit circle case. In: Existence Theory for Nonlinear Ordinary Differential Equations. Mathematics and Its Applications, vol 398. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1517-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1517-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4835-6

  • Online ISBN: 978-94-017-1517-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics