Skip to main content

Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight)

  • Chapter
Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

Primary production and decompositional processes were measured within the mixing gradient of lagoonal and coastal water of the Pomeranian Bight during summer/autumn on four cruises between 1993 and 1995. Although different sampling strategies were applied, the results fitted well in a general pattern. Nearly all measured variables (e.g. POC, chlorophyll α) appear to be conservatively mixed along the salinity gradient between 2 and 8 PSU which is typical for the southern Baltic area. That pattern is, however, not due to a conservative behaviour of the components but to a balanced state of auto- and heterotrophic processes with a continuous, closely coupled recycling of matter. This is particularly evident in periods of nutrient limitation. Within the mixing gradient, changes were restricted to structural components (species composition) whereas the functional equilibrium was maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjornsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. envir. Microbiol. 51: 1199–1204.

    CAS  Google Scholar 

  • Coffin, R. B., D. J. Velinsky, R. Devereux, W. A. Price and L. A. Cifuentes, 1990. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl. envir. Microbiol. 56: 2012–2020.

    CAS  Google Scholar 

  • Cole, J. J., S. Findlay and M. L. Pace, 1988. Bacterial production in fresh and salt water ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Ducklow, H. W., 1982. Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during spring tidal destratification in the York River, Virginia, estuary. Limnol. Oceanogr. 27: 651–659.

    Article  CAS  Google Scholar 

  • Ducklow, H. W. and C. A. Carlson, 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12: 113–181.

    Article  Google Scholar 

  • Ducklow, H. W. and D. L. Kirchman, 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plankton Res. 5: 333–355.

    Article  Google Scholar 

  • Eppley, R. W., 1981. Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth rates in the ocean. In T. Platt (ed.), Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. aquat. Sci. 210: 251–263.

    Google Scholar 

  • Findlay, S., M. L. Pace, D. Lints and J. J. Cole, 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnol. Oceanogr. 36: 268–278.

    Article  Google Scholar 

  • Fuhrman, J., J. W. Ammerman and F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Article  Google Scholar 

  • Jacobsen, T. R., L. R. Pomeroy and J. O. Blanton, 1983. Autotrophic and heterotrophic abundance and activity associated with a nearshore front off the Georgia coast, USA. Estuar. coast. Shelf Sci. 17: 509–520.

    Google Scholar 

  • Jonas, R. B., J. H. Tuttle, D. L. Stoner and H. W. Ducklow, 1988. Duallabel radioisotope method for simultaneously measuring bacterial production and metabolism in natural waters. Appl. envir. Microbiol. 54: 791–798.

    CAS  Google Scholar 

  • Kirchman, D., B. Petersen and D. Juers, 1984. Bacterial growth and tidal variation in bacterial abundance in the Great Shippewissett Salt Marsh. Mar. Ecol. Prog. Ser. 19: 247–259.

    Article  Google Scholar 

  • Lochet, K. and M. Leveau, 1990. Transfers between a eutrophic ecosystem, the River Rhone, and an oligotrophic ecosystem, the northwestern Mediterranean Sea. In D. J. Bonin and H. L. Goiter-mans (eds), Fluxes Between Trophic Levels and Through the Water-Sediment-Interface 207: 95–103.

    Google Scholar 

  • Pastuszak, M., K. Nagel and G. Nausch, 1996. Variability in nutrient distribution in the Pomeranian Bay in Septermber 1993. Oceanologia 38: 195–225.

    Google Scholar 

  • Pollehne, F., S. Busch, G. Jost, B. Meyer-Harms, M. Nausch, M. Reckermann, P. Schaening, D. Setzkorn, N. Wasmund and Z. Witek, 1995. Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (Southern Baltic). Bull. Sea Fish. Inst., Gdynia 3 (136): 43–60.

    Google Scholar 

  • Postel, L., N. Mumm and A. Krajewska-Soltys, 1995. Metazooplankton distribution in the Pomeranian Bay, (southern Baltic) -species composition, biomass and respiration. Bull. Sea Fish. Inst., Gdynia 3: 61–73.

    Google Scholar 

  • Powilleit, M., J. Kube, J. Maslowski and J. Warzocha, 1995. Distribution of macrobenthic invertebrates in the Pomeranian Bay (Southern Baltic) in 1993/1994. Bull. Sea Fish. Inst., Gdynia 3: 75–87.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards, 1963. The influence of organisms on the composition of seawater. In M. N. Hill (ed.), The Sea. John Wiley and Sons, New York, 2: 26–77.

    Google Scholar 

  • Revelante, N. and M. Gilmartin, 1992. The lateral advection of particulate organic matter ftom the Po delta region during summer stratification, and its implications for the northern Adriatic. Estuar. coast. Shelf Sci. 35: 191–212.

    Article  CAS  Google Scholar 

  • Riemann, B., P. K. Bjt msen, S. Newell and R. Fallon, 1987. Calculation of cell production of coastal marine bacteria based onmeasured incorporation of (3H)thymidine. Limnol. Oceanogr. 32: 471–476.

    Article  CAS  Google Scholar 

  • Riemann, B. and M. S¢ndergaard, 1984. Measurements of diel rates of bacterial secondary production in aquatic environments. Appl. envir. Microbiol. 47: 632–638.

    Google Scholar 

  • Rybinski, J., E. Niemirycz and Z. Makowski, 1992. Pollution load. In A. Trzosinska (ed.), Marine Pollution (2) An Assessment of the Effects of Pollution in the Polish Coastal Area of the Baltic Sea 1984–1989. National Scientific Committee on Oceanic Research PAS, Gdansk: 21–52.

    Google Scholar 

  • Shia, F.-K. and H. W. Ducklow, 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. 39: 1243–1258.

    Article  Google Scholar 

  • Shia, F.-K. and H. W. Ducklow, 1995. Multiscale variability in bacterioplankton abundance, production, and specific growth rate in a temperate salt-marsh tidal creek. Limnol. Oceanogr. 40: 55–66.

    Article  Google Scholar 

  • Siegel, H., M. Gerth and T. Schmidt, 1996. Water exchange in the Pomeranian Bight investigated by satellite data and shipborne measurements. Continental Shelf Res. 16: 1793–1817.

    Article  Google Scholar 

  • Simon, M. and F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Google Scholar 

  • UNESCO, 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. IOC/SCOR Manual and Guides 29: 128–134.

    Google Scholar 

  • Valiela, I., 1995. Marine Ecological Processes, 2. Springer, New York, 686 pp.

    Book  Google Scholar 

  • von Bodungen, B. and B. Zeitzschel, 1996. Die Ostsee als Ökosystem. In G. Rheinheimer (ed.), Meereskunde der Ostsee, 2. Springer-Verlag, Heidelberg: 230–244.

    Google Scholar 

  • White, P. A., J. Kalif, J. B. Rasmussen and J. M. Gasol., 1991. The effects of temperature and algal biomass on bacterial and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21: 99–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jost, G., Pollehne, F. (1998). Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight). In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics