Skip to main content

A theoretical approach to structuring mechanisms in the pelagic food web

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

In the literature there is a commonly used idealized concept of the food web structure in the pelagic photic zone food web, based to a large extent on size dependent relationships. An outline is here given of how the elementary size-related physical laws of diffusion and sinking, combined with the assumption of predators being size selective in their choice of prey, give a theoretical foundation for this type of structure. It is shown how such a theoretical fundament makes it possible to relate a broad specter of phenomena within one generic and consistent framework. Phenomena such as Hutchinson’s and Goldman’s paradoxes, the influence of nutrients and water column stability on the balance between microbial and classical food webs, bacterial carbon consumption, new production and export of DOC and POC to the aphotic zone, eutrophication and diversity, can all be approached from this perspective. By including host-specific viruses, this approach gives a hierarchical structure to the control of diversity with nutrient content controlling the maximum size of the photic zone community, size selectivity of predators regulating how the nutrient is distributed between size-groups of osmotrophic and phagotrophic organisms, and viral host specificity regulating how the nutrients within a size group is distributed between host groups. I also briefly discuss how some biological strategies may be successful by not conforming to the normal rules of such a framework. Analyzing the behavior of these idealized systems is thus claimed to facilitate our understanding of the behavior of complex natural food webs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., 1981. The impact of appendicularian grazing on natural food concentrations in situ. Limnol. Oceanogr. 26: 247–257.

    Article  Google Scholar 

  • Armstrong, R. A., 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solution of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39: 597–608.

    CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil T. F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Baretta-Bekker, J. G., B. Riemann, J. W. Baretta E. K. Rasmussen, 1994. Testing the microbial loop concept by comparing mesocosm data with results from a dynamical simulation model. Mar. Ecol. Prog. Ser. 106: 187–198.

    Article  Google Scholar 

  • Bergh, 0., K. Y. BOrsheim, G. Bratbak M. Heldal, 1989. High abundance of viruses found in aquatic environments. Nature 340: 467–468.

    Google Scholar 

  • Campbell, L. D. Vaulot, 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii ( Station ALOHA ). Deep Sea Res. 40: 2043–2060.

    Article  Google Scholar 

  • Dugdale, R. C. J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.

    Article  CAS  Google Scholar 

  • Fenchel, T., 1987. Ecology- Potentials and limitations. In Kinne, O. (ed.), Excellence in Ecology. Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: A case study of a plankton community in a large lake. Limnol.Oceanogr. 38: 112–127.

    Article  Google Scholar 

  • Goldman, J. C., J. J. McCarthy, D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Article  CAS  Google Scholar 

  • Hayskum, H. B. Riemann, 1996. Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Mar. Ecol. Prog. Ser. 137: 251–263.

    Article  Google Scholar 

  • Horowitz, A., M. I. Krichevsky, R. M. Atlas, 1983. Characteristics and diversity of subarctic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations. Can. J. Microbiol. 29: 527–535.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Article  Google Scholar 

  • Leibold, M. A., 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147: 784–812.

    Article  Google Scholar 

  • Malone, T. C., 1980. Algal size. In Morris, I. (ed.), The physiological ecology of phytoplankton. Studies in Ecology. Vol. 7. pp. 433463. Blackwell, Oxford.

    Google Scholar 

  • Margalef, R., 1969. Diversity and stability: A practical proposal and a model of interdependence. In Diversity and stability in ecological systems. Brookhaven Symposia in Biology. Vol. 22. Brookhaven National Laboratory, Upton,. New York.

    Google Scholar 

  • Moloney, C. L. J. G. Field, 1991. The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J. Plankt. Res. 13: 1003–1038.

    Article  Google Scholar 

  • Moloney, C. L., 1992. Simulation studies of trophic flows and nutrient cycles in Benguela upwelling foodwebs. In Payne, A. I. L., K. H. Brink, K. H. Mann, R. Hilborn (eds), Benguela Trophic Functioning. S. afr. J. mar. Sci. 12: 457–476.

    Google Scholar 

  • Pengerud, B., E. F. Skjoldal, T. E Thingstad, 1987. The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacterivorous nanoflagellates. Mar. Ecol. Prog. Ser. 35: 111–117.

    Article  CAS  Google Scholar 

  • Pomeroy, L. R., J. E. Sheldon, W. M. Sheldon Jr. E Peters, 1995. Limits to growth and respiration of bacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 117: 259–268.

    Article  Google Scholar 

  • Power, M. E., 1992. Top-down and bottom-up forces in food webs: Do plants have primacy. Ecology 73: 733–746.

    Google Scholar 

  • Rodriguez, J. M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic system. Limnol. Oceanogr. 31: 361–370.

    Article  Google Scholar 

  • Ryther, J., 1969. Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life throughout the world ocean. Science 166: 72–76.

    Google Scholar 

  • Sheldon, R. W., A. Prakash, A. W. H. Sutcliffe, 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Article  Google Scholar 

  • Smayda, T. S., 1980. Phytoplankton species succession. In Morris, I. (ed.), The physiological ecology of phytoplankton. Stud. Ecol. 7: 493–570. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Strong, D. R., 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.

    Article  Google Scholar 

  • Taylor, F. J. R., 1980. Basic biological features of phytoplankton cells. In Morris, I. (ed.) The physiological ecology of phytoplankton. Stud. Ecol. 7: pp. 3–55. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Tett, R E. D. Barton, 1995. Why are there about 5000 species of phytoplankton in the sea? J. Plankt. Res. 17: 1693–1704.

    Article  Google Scholar 

  • Thingstad, T. F. B. Pengerud, 1985. Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory. Mar. Ecol. Prog. Ser. 21: 47–62.

    Article  Google Scholar 

  • Thingstad, T. F. E. Sakshaug, 1990. Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology. Mar. Ecol. Prog. Ser. 63: 261–272.

    Article  Google Scholar 

  • Thingstad, T. F. F. Rassoulzadegan, 1995. Nutrient limitations, microbial food webs, and `biological C-pumps’: suggested interactions in a P-limited Mediterranean. Mar. Ecol. Prog. Ser. 117: 299–299.

    Article  Google Scholar 

  • Thingstad, T. F., H. Hayskum, K. Garde, B. Riemann, 1996. On the strategy of `eating your competitor’. A mathematical analysis of algal mixotrophy. Ecology 77: 2108–2118.

    Article  Google Scholar 

  • Thingstad, T. F., G. Bratbak, M. Heldal I. Dundas, (in press). Trophic interactions controlling diversity in pelagic microbial food webs. Proceedings of the 7th International Symposium in Microbial Ecology (ISMS-7) Santos Brazil, 27.08–01.09 1995.

    Google Scholar 

  • Thingstad, T. F., A. Hagstrdm E Rassoulzadegan, 1997. Export of degradable DOC from oligotrophic surface waters: caused by a malfunctioning microbial loop? Limnol. Oceanogr. 42: 398–404.

    CAS  Google Scholar 

  • Thingstad, T. F. R. Lignell, 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microbiol. Ecol. 13: 19–27.

    Article  Google Scholar 

  • Vaulot, D., N. LeBot, D. Marie E. Fukai, 1996. Effect of phosphorus on Synechococcus cell cycle in surface Mediterranean waters during summer. Appl. Envir. Microbiol. 62: 2527–2533.

    CAS  Google Scholar 

  • Verity, P. V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. ser. 130: 277–293.

    Article  Google Scholar 

  • Walsby, A. E. C. S. Reynolds, 1980. Sinking and floating. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Stud. Ecol. 7: 371–412. Blackwell Scientific Publishers, Oxford.

    Google Scholar 

  • Wilcox, R. M. J. A. Fuhrman, 1994. Bacterial viruses in coastal seawater: Lytic rather than lysogenic production. Mar. Ecol. Pro-gr. Ser. 114: 35–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thingstad, T.F. (1998). A theoretical approach to structuring mechanisms in the pelagic food web. In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics