Skip to main content

Retention versus export food chains: processes controlling sinking loss from marine pelagic systems

  • Chapter
Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

The role of export and retention food chains for pelagic-benthic coupling is considered by evaluating different food chain scenarios and processes such as aggregation, grazing and zooplankton-mediated fluxes. The consequences of grazing of primary production by different zooplankton for the vertical export of particulate organic matter from the euphotic zone are discussed. Reference is made to existing data and algorithms regarding primary production and vertical export of carbon from the euphotic zone, both on annual and daily time scales. Examples regarding the role of nutrient addition, removal of pelagic carnivores and zooplankton grazing for vertical flux are presented. It is speculated how variable grazing impact of micro- and mesozooplankton, as well as herbivorous, omnivorous and carnivorous feeding strategies of mesozooplankton could compete with aggregation during phytoplankton blooms and influence export fluxes. It is concluded that the transport of particulate organic matter to depth not only depends on bottom-up regulation as determined by physical forcing, but also on the structure and function of the prevailing planktonic food web. Scenarios are presented which indicate that top-down regulation plays a pivotal role for the regulation of vertical flux. This conclusion may have crucial consequences for future biogeochemical programmes investigating pelagic-benthic coupling in the ocean. The endeavours of many research programmes are dominated by lines of thought where straightforward biogeochemistry and bottom-up regulation is the focus. Phyto- and zooplankton as well as process-oriented research activities have to be the focal point of future research if the current comprehension of export from and retention in the upper layers is going to make distinct progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksnes, D. L., J. Aure, S. Kaartvedt, T. Magnesen and J. Richard, 1989. Significance of advection for the carrying capacities of fjord populations. Mar. Ecol. Prog. Ser. 50: 263-274.

    Article  Google Scholar 

  • Aksnes, D. L. and P. Wassmann, 1993. Modelling the significance of zooplankton grazing for export production. Limnol. Oceanogr. 38: 978-985.

    Article  Google Scholar 

  • Alldredge, A. and G. A. Jackson, 1995. Aggregation in marine systems. Deep-Sea Res. 42: 1–273.

    Article  Google Scholar 

  • Alldredge, A. L. and M. W. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.

    Article  Google Scholar 

  • Arashkevitch, E. G., A. V. Drits, T. N. Semenova and V. P. Shevchenko, 1994. Contents, production and sinking rate of faecal pellets of salps and pyrosomas in the south-western part of the Atlantic ocean. Russian J. aquat. Ecol. 3: 143–153.

    Google Scholar 

  • Andreassen, I., E.-M. Nöthig and P. Wassmann, 1996. Sedimentation of particulate matter on the shelf of northern Spitzbergen. Mar. Ecol. Prog. Ser. 137: 215–228.

    Article  Google Scholar 

  • Andreassen, I. J. and P. Wassmann, 1998. Vertical flux of biogenic matter in the marginal ice zone of the Barents Sea in May. Mar. Ecol. Prog. Ser. (in press).

    Google Scholar 

  • Angel, M. V., 1984. Detrital organic fluxes through pelagic ecosystems. In M. J. R. Fasham (eds), Flows of Energy and Materials in Marine Ecosystems: 475–516.

    Chapter  Google Scholar 

  • Asper, V. L., W. G. Deuser, G. A. Knauer and S. E. Lohrenz, 1992. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature 357: 670–672.

    Article  Google Scholar 

  • Azam F, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Bacastow, R. and E. Maier-Reimer, 1991. Dissolved organic carbon in modelling the oceanic new production. Global Biogeochem. Cycles 5: 71–85.

    Article  CAS  Google Scholar 

  • Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the upper ocean. Oceanography 7: 13–20.

    Article  Google Scholar 

  • Banse, K., 1995. Zooplankton: Pivotal role in the control of ocean production. ICES J. mar. Sci. 52: 265–277.

    Article  Google Scholar 

  • Bathmann, U., 1988. Mass occurrence of Salim fusiformis in the spring of 1984 off Ireland: implication for sedimentation processes. Mar. Biol. 97: 127–135.

    Article  Google Scholar 

  • Bathmann, U., T. Noji and B. von Bodungen, 1990b. Copepod grazing potential in late winter in the Norwegian Sea - a factor in the control of spring phytoplankton growth? Mar. Ecol. Prog. Ser. 60: 225–233.

    Article  Google Scholar 

  • Bathmann, U., R. Peinert and B. von Bodungen, 1990a. Pelagic origin and fate of sedimenting particles in the Norwegian Sea. Prog. Oceanogr. 24: 117–125.

    Article  Google Scholar 

  • Berger, W., V. Smetacek and G. Wefer, 1989. Ocean productivity and paleoproductivity. In W. Berger, V. Smetacek, & G. Wefer (eds), Productivity of the Ocean: Present and Past, John Wiley and Sons, New York: 1–34.

    Google Scholar 

  • Betzer, P. R., W. J. Showers, E. D. Laws, C. D. Winn, G. R. DiTullio and P. M. Kroopnick, 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep Sea Res. 31: 1–11.

    Article  Google Scholar 

  • Bloesch, J., 1996. Towards a new regeneration of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: A hydrodynamical protocol. Aquat. Sci.: 58: 283–296.

    Article  Google Scholar 

  • Bodungen, B. von, 1986. Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica. Implications for sediment trap collections. Polar Biol. 6: 153–160.

    Article  Google Scholar 

  • Bodungen, B. von, A. Antia, E. Bauerfeind, O. Haupt, I. Peeken, R. Peinert, S. Reitmeier, C. Thomsen, M. Voss, M. Wunsch, U. Zeller and B. Zeitzschel, 1995. Pelagic processes and vertical flux of particles: an overview over a long-term comparative study in the Norwegian Sea and Greenland Sea. Geologische Rundschau 84: 28–48.

    Article  Google Scholar 

  • Bodungen B. von, G. Fischer, E.-M. Nöthig and G. Wefer, 1987. Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica. SCOPE/UNEP 62: 243–257.

    Google Scholar 

  • Burkill, P. H., E. S. Edwards, A. W. G. John and M. A. Sleigh, 1993. Micro-zooplankton and their herbivorous activity in the northeast Atlantic Ocean. Deep Sea Res. 40: 479–494.

    Article  Google Scholar 

  • Carson, C. A., H. W. Ducklow and A. F. Michael, 1994. Annual flux of dissolved organic carbon form the euphotic zone in the northwestern Sargasso Sea. Nature 371: 405–408.

    Article  Google Scholar 

  • Dagg, M., 1993. Grazing by the copepod community does not control phytoplankton production in the Subarctic Pacific Ocean. Prog. Oceanogr. 32: 163–183.

    Article  Google Scholar 

  • Dam, H. G., M. R. Roman and M. I. Youngbluth, 1995. Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrating mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. 42: 1187–1197.

    Article  CAS  Google Scholar 

  • Davies, J. M. and R. Payne, 1984. Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Mar. Biol. 78: 315–324.

    Article  CAS  Google Scholar 

  • Deuser W. G., E. H. Ross and R. F. Anderson, 1981. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep Sea Res. 28: 495–505.

    Article  CAS  Google Scholar 

  • Drenner, R. W., S. T. Threlkeld, J. D. Smith, J. R. Mummert and P. A. Cantrall, 1989. Interdependence of phosphorous, fish and site effects on phytoplankton biomass and zooplankton. Limnol. Oceanogr. 34: 1315–1321.

    Article  CAS  Google Scholar 

  • Dugdale R. C. and J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.

    Article  CAS  Google Scholar 

  • Dugdale, R. C., F. P. Wilkerson and H. J. Minas, 1995. The role of a silicate pump in driving new production. Deep Sea Res. 42: 697–719.

    Article  CAS  Google Scholar 

  • Egge, J. K., 1993. Nutrient control of phytoplankton growth: Effects of macro nutrient composition (N, P, Si) on species succession. Dr. Scient. thesis, Univ. Bergen, 104 pp.

    Google Scholar 

  • Elser, J. J., D. K. Foster and R. E. Hecky, 1995. Effects of zooplankton on sedimentation in pelagic ecosystems: Theory and test in two lakes of the Canadian shield. Biogeochemistry 30: 143–170.

    Article  Google Scholar 

  • Eppley, R. and B. J. Peterson, 1979. Particulate organic flux and planktonic new production in the deep ocean. Nature 282: 677–680.

    Article  Google Scholar 

  • Fischer, G., D. Fütterer, R. Gersonde, S. Honjo, D. Ostermann and G. Wefer, 1988. Seasonal variability of particle flux in the Weddell Sea and its relationship to ice cover. Nature 335: 426–428.

    Article  Google Scholar 

  • Fransz, H. G. and W. W. C. Gieskes, 1984. The unbalance of phytoplankton and copepods in the North Sea. Rapp. P.-v. Réun. Cons. int. Explor. Mer 183: 218–225.

    Google Scholar 

  • Frost, 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36: 1616–1630.

    Article  Google Scholar 

  • Gifford, D. J., L. M. Fessenden, P. G. R. Garrahan and E. Martin, 1996. Grazing by microzooplankton and mesozooplankton in the high-latitude North Atlantic Ocean: Spring versus summer dynamics. J. Geophys. Res. 100: 6665–6675.

    Article  Google Scholar 

  • Gonzalez H. and V. Smetacek, 1994. The possible role of the cyclopoide copepod Oithona in retarding vertical flux of the zoo-plankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.

    Article  Google Scholar 

  • Graf, G., 1992. Pelagic-benthic coupling: a benthic perspective. Mar. Biol. Annu. Rev. 30: 149–190.

    Google Scholar 

  • Hansen, L., 1997. Suspenderte og sedimenterte fekalier langs et transekt over Nordvestbanken, Nord-Norge, 1994. Cand. Scient. thesis, University of Tromso, Norway (in Norwegian).

    Google Scholar 

  • Hargrave, B. T., G. C. Harding, K. F. Drinkwater, T. C. Lambert and W. G. Harrison, 1985. Dynamics of the pelagic food web in St. Georges Bay, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 20: 221–240.

    Article  Google Scholar 

  • Haupt, O., 1995. Modellstudien zum pelagischen Stoffumsatz und vertikalen Partickelfluß in der Norwegensee. Ber. Sonderforschungsbereich 313, Univ. Kiel, 60: 1–140.

    Google Scholar 

  • Hedges, J. I., W. A. Clarke and G. L. Cowie, 1988a. Organic matter sources to the water column and surficial sediments of a marine bay. Limnol. Oceanogr. 33: 1116–1136.

    Article  CAS  Google Scholar 

  • Hedges, J. I., W. A. Clarke and G. L. Cowie, 1988b. Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 33: 1137–1152.

    Article  CAS  Google Scholar 

  • Heinrich, A. K., 1962. The life histories of plankton animals and seasonal cycles of plankton communities in the oceans. J. Cons. perm. int. Explor. Mer 27: 15–24.

    Google Scholar 

  • Heiskanen, A.-S. and K. J. Kononen, 1994. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Arch. Hydrobiol. 131: 175–198.

    Google Scholar 

  • Heiskanen, A.-S., T. Tamminen and K. Gundersen, 1996. The impact of planktonic food web structure on nutrient retention and loss from a late summer pelagic system in the coastal northern Baltic Sea. Mar. Ecol. Prog. Ser. 145: 195–208.

    Article  Google Scholar 

  • Heussner, S., A. Monaco and S. W. Fowler, 1987. Characterisation and vertical transport of settling biogenic particles in the northwestern Mediterranean. In E. T. Degens, E. I. Izdar and S. Honjo (eds), Particle Flux in the Ocean, Mitt. Geol.-Paläont. Inst., Univ. Hamburg, SCOPE/UNEP Sonderband 62: 127–147.

    Google Scholar 

  • Hessen, D. O., J. P. Nilsen and T. O. Eriksen, 1986. Food size spectra and species replacement within herbivorous zooplankton. Int. Revue ges. Hydrobiol. 71: 1–10.

    Google Scholar 

  • Honjo, S., 1990. Particle fluxes and modern sedimentation in polar oceans. In W. O. Smith, (ed.), Polar Oceanography, Academic Press, New York: 687–739.

    Google Scholar 

  • lanora, A. and S. Poulet, 1993. Egg viability in the copepod Temora stylifera. Limnol. Oceanogr. 38: 1615–1626.

    Article  Google Scholar 

  • Ianora, A., S. Poulet and A. Miralto, 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar. Biol. 121: 533–539.

    Article  Google Scholar 

  • Iseki, K., 1981. Particulate organic matter transport to the deep sea by salp faecal pellets. Mar. Ecol. Prog. Ser. 5: 55–60.

    Article  Google Scholar 

  • Ittekot, V., P. Schäfer, S. Honjo and P. J. Depetris, 1996. Particle Flux in the Ocean. John Wiley and Sons Ltd., 372 pp.

    Google Scholar 

  • Iverson, R., 1991. Control of fish production. Limnol. Oceanogr. 35: 1593–1604.

    Article  Google Scholar 

  • Jackson, G. A., 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particulate flux. Limnol. Oceanogr. 38: 1328–1331.

    Article  Google Scholar 

  • Jonasdottir, S. H. and T. Kiorboe, 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125: 743–750.

    Google Scholar 

  • Karl, D. M., J. R. Christian, J. E. Dore, D. V. Hebel, R. M. Letelier, L. M. Tupas and C. D. Winn, 1996. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep-Sea Res. 43: 539–568.

    Google Scholar 

  • Keller, A. A. and U. Riebesell, 1989. Phytoplankton carbon dynamics during a winter-spring diatom bloom in an enclosed marine ecosystem: primary production, biomass and loss rates. Mar. Biol. 103: 131–142.

    Article  CAS  Google Scholar 

  • Keck, A. and R. Wassmann, 1993. pen sibirske kontinentalsokkel og Polhavet. II. Betydning for den globale karbonkretslop? Naturen 6: 264–272.

    Google Scholar 

  • Kiorboe, T., 1993. Turbulence, phytoplankton cell size and the structure of pelagic food webs. Adv. mar. Biol. 29: 1–72.

    Article  Google Scholar 

  • Kiorboe, T., 1996. Material fluxes in the water column. In B. B. Jorgensen & K. Richardson, (eds), Coastal and Estuarine Studies 52, American Geophysical Union, Washington D. C.: 67–94.

    Google Scholar 

  • Kiorboe, H. and J.-L. Hansen, 1993. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15: 993–1018.

    Article  Google Scholar 

  • Kiorboe, T., C. Lundsgaard, M. Olesen and J. L. Hansen, 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. mar. Res. 52: 297–323.

    Article  Google Scholar 

  • Lalli, C. M. and T. R. Parson (1993). Biological Oceanography: An Introduction. Pergamon Press, Oxford, 301 pp.

    Google Scholar 

  • Lampitt, R. S., T. Noji and B. von Bodungen, 1990. What happens to zooplankton fecal pellets? Implications for material flux. Mar. Biol. 104: 15–23.

    Article  Google Scholar 

  • Langeland, A., 1990. Biomanipulation development in Norway. Hydrobiologia 200 /201: 535–540.

    Article  Google Scholar 

  • Laws, E. A., P. K. Bienfang, A. D. Ziemann and L. D. Conquest, 1988. Phytoplankton population dynamics and the fate of production during the spring bloom in Auke Bay, Alaska. Limnol. Oceanogr. 33: 57–65.

    Article  Google Scholar 

  • Lee, C. and S. Wakeham, 1991. Production, transport and alteration of particulate organic matter in sea water. In P. Wassmann, A.-S. Heiskanen and O. Lindahl (eds), Sediment Trap Studies in the Nordic Countries 2. Proceedings. NurmiPrint OY, Nurmijärvi, 61–75.

    Google Scholar 

  • Legendre, L., 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in the ocean. J. Plankton Res. 12: 681–699.

    Article  CAS  Google Scholar 

  • Longhurst, A. R. and W. G. Harison, 1989. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton. Deep Sea Res. 35: 881–889.

    Google Scholar 

  • Mazumder, A., D. J. McQueen, W. D. Taylor and D. R. S. Lean, 1988. Effects of fertilisation and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: Large enclosure experiments. Limnol. Oceanogr. 33: 421–430.

    Article  CAS  Google Scholar 

  • Noji, T. T., 1991. The influence of macrozooplankton on vertical particulate flux. Sarsia 76: 1–9.

    Google Scholar 

  • Noji, T. T. and F. Rey, 1996. Old and new perspectives on zooplankton and vertical particulate flux. ICES report cm 1996/0: 10, 14 pp.

    Google Scholar 

  • Nordby, E. and K. S. Tande, 1998. Zooplankton biomass distribution and plankton transport at Nordvestbanken. Sarsia (in prep).

    Google Scholar 

  • Odate, T., 1994. Plankton abundance and size structure in the northern North Pacific Ocean in early summer. Fish. Oceanogr. 3: 267–278.

    Google Scholar 

  • Olesen, M. and C. Lundsgaard, 1995. Seasonal sedimentation of autochthonous material from the euphotic zone of a coastal system. Estuar. coast. Shelf-Sci. 41: 475–490.

    Article  CAS  Google Scholar 

  • Pace, M. L., G. D. Knauer, D. M. Karl and J. H. Martin, 1987. Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature 325: 803–804.

    Article  CAS  Google Scholar 

  • Passow, U., A. Alldredge and B. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res. 41: 335–357.

    Article  CAS  Google Scholar 

  • Pedersen, G., 1995. Factors influencing the size and distribution of the copepod community in the Barents Sea with special emphasis on Calanus finmarchicus (Gunnerus). Dr Scient. thesis, University of Tromso, Norway.

    Google Scholar 

  • Peinert, R., B. von Bodungen and V. Smetacek, 1989. Food web structure and loss rates. In W. Berger, V. Smetacek and G. Wefer (eds), Productivity of the Ocean: Present and Past, John Wiley and Sons, New York: 34–48.

    Google Scholar 

  • Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt and V. Smetacek, 1982. Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16: 276–289.

    Article  CAS  Google Scholar 

  • Pilskaln C. H. and S. Honjo, 1987. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global Biogeochem. Cycles 1: 31–48.

    Article  CAS  Google Scholar 

  • Platt, T., W. G. Harrison, M. L. Lewis, W. K. W. Li, S. Sathyendranath, R. Smith and A. F. Vezina, 1988. Biological production and the oceans: the case for a consensus. Mar. Ecol. Prog. Ser. 52: 77–88.

    Google Scholar 

  • Ratkova, T., I. Andreassen and P. Wassmann, 1998. Phytoplankton and protozoa abundance and biomass along a transect across the Nordvestbank, north Norwegian shelf, in 1994. Sarsia (in prep).

    Google Scholar 

  • Reigstad, M. and P. Wassmann, 1995. The importance of advection for the pelagic-benthic coupling in north Norwegian fjords. Sarsia 80: 245–257.

    Google Scholar 

  • Reinertsen, H. and Y. Olsen, 1984. Effects of fish elimination an the phytoplankton community of a eutrophic lake. Verh. Int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  • Riebesell, U., M. Reigstad, P. Wassmann, U. Passow and T. Noji, 1995. On the trophic fate of Phaeocystis pouchetii. VI. Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea. Res. 33: 193–203.

    Article  Google Scholar 

  • Sasaki, H., H. Hattori v S. Nishizawa, 1988. Downward flux of particulate matter and vertical distribution of calanoid copepods in the Oyashio water in summer. Deep Sea Res. 35: 505–515.

    Article  CAS  Google Scholar 

  • Silver, M. W., C. H. Pilskaln and D. Steinberg, 1991. The biologists’ view of sediment trap collections: problems of marine snow and living organisms. In P. Wassmann, A.-S. Heiskanen and O. Lindahl (eds). Sediment Trap Studies in the Nordic countries 2. Proceedings. NurmiPrint OY, Nurmijärvi: 76–93.

    Google Scholar 

  • Sathyendranath, S. and T. Platt, 1993. Remote sensing of water-column primary production. In W. K. W. Li and S. Y. Maestrini (eds), Measurements of Primary Production from the Molecular to the Global Scales. ICES Marine Science Symposia, Vol. 197: 236–243.

    Google Scholar 

  • Skjoldal, H. R. and R Wassmann, 1986. Sedimentation of particulate organic matter and silicium during spring and summer in Lindâspollene, western Norway. Mar. Ecol. Prog. Ser. 30: 49–63.

    Google Scholar 

  • Smetacek, V., B. Bodungen, B. Knoppers, R. Peinert, F. Pollehne, P. Stegmann and B. Zeitzschel, 1984. Seasonal stages characterising the annual cycle of an inshore pelagic system. Rapp. P.-v. J. Cons. in Explor. Mer 183: 126–135.

    Google Scholar 

  • Staresinic, N., J. Farrington, R. B. Gagosian, C. H. Clifford and E. M. Hulburt, 1983. Downward transport of particulate matter in the Peru coastal upwelling: Role of anchoveta, Engraulis ringens. In E. Suess and J. Thiede (eds), Coastal Upwelling, its Sediment Record. NATO Conference Series IV: 225–240.

    Google Scholar 

  • Steele, J., 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization. Nature 288: 260–263.

    Article  CAS  Google Scholar 

  • Taguchi, S., 1982. Sedimentation of newly produced particulate organic matter in a subtropical inlet, Kaneohe Bay, Hawaii. Estuar. coast. Shelf Sci. 14: 533–544.

    Article  CAS  Google Scholar 

  • Tande, K. S., 1991. Calanus in high latitudes. Polar. Res. 10: 389-407.

    Article  Google Scholar 

  • Takahashi, K., 1986. Seasonal fluxes of pelagic diatoms in the subarctic Pacific 1982–1983. Deep Sea Res. 33: 1225–1251.

    Article  Google Scholar 

  • Thingstad, T. F., 1995. Feedback mechanisms between degradation and primary production in the pelagic environment. In M. Beran (ed.), Carbon Sequestration in the Biosphere. Processes and prospects. NATO ASI Series, series I. Global environmental change, 33: 113–128.

    Google Scholar 

  • Uye, S.-I., 1996. Induction of reproductive failure in the planktonic copepod Calanus pacificus by diatoms. Mar. Ecol. Prog. Ser. 133: 89–97.

    Article  Google Scholar 

  • Verity, P. and V. Smetacek, 1996. Organism life cycle, predation and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–293.

    Article  Google Scholar 

  • Wassmann, P., 1990. Relationship between primary and export production in the boreal, coastal zone of the North Atlantic. Limnol. Oceanogr. 35: 464 171.

    Google Scholar 

  • Wassmann, P., 1991. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. annu. Rev. 29: 87–154.

    Google Scholar 

  • Wassmann, P., 1993. Regulation of vertical export of particulate organic matter from the euphotic zone by planktonic heterotrophs in eutrophicated aquatic environments. Mar. Pollut. Bull. 26: 636–643.

    Article  Google Scholar 

  • Wassmann, P., I. Andreassen, M. Reigstad and D. Slagstad, 1996. Pelagic-benthic coupling in the Nordic Seas: The role of episodic events. P.S.Z.N. I: Mar. Ecol. 17: 447–471.

    Article  CAS  Google Scholar 

  • Wassmann, P., J. K. Egge, M. Reigstad and D. L. Aksnes, 1997. Influence of dissolved silicate on vertical flux of particulate biogenic matter. Mar. Pollut. Bull. 33: 10–21.

    Article  Google Scholar 

  • Wassmann, P., I. Andreassen and F. Rey, 1998. Seasonal variation of nutrients and suspended biomass along a transect across the Nordvestbank, north Norwegian shelf, in 1994. Sarsia (in prep).

    Google Scholar 

  • Wassmann, P., R. Peinert and V. Smetacek, 1991. Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Research 10: 209–228.

    Article  Google Scholar 

  • Wassmann, P. and D. Slagstad, 1993. Seasonal and interannual dynamics of carbon flux in the Barents Sea: a model approach. Polar Res. 13: 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wassmann, P. (1998). Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics