Skip to main content

Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea)

  • Chapter
Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

The Adriatic Sea is a semi-enclosed ecosystem that receives in its shallow part, the northern basin, significant freshwater inputs which markedly increase its productivity with respect to the oligotrophic features of the Mediterranean sea. In this area, especially on the western coast where river plumes diffuse, high physical (density) and chemical (nutrients) gradients occur on a small scale, both horizontal and vertical. Results of bacterial production as 3H-thymidine incorporation, bacterial abundance as DAPI direct count, autotrophic biomass as chlorophyll a and total biomass as ATP from three areas in the Northern Adriatic Sea are reported. The three sites, differently influenced by the river water diffusion, were sampled seasonally over two days, every 24 h, in four surveys from April 1995 to January 1996. Bacterioplankton production, strongly correlated with primary production, was extremely high near the coast in low-salinity, high-nutrient waters, mostly as an indirect consequence of riverine inputs causing an increase in phytoplankton production stimulated by physically driven nutrient inputs. In the warm months bacterial activity was higher than in cold months. While bacteria abundance did not appear related to the salinity gradients, bacterial production (from 0.6 to 372 pM 3H-thymidine h−1 incorporated, corresponding to 0.01–8.2 μ g C 1−1 h−1) and the relative generation times (from 0.2 to 35 days) showed a high range of values, representing a variety of situations, from estuaries to the ocean. The resulting role of the bacterial community in the carbon cycle is very consistent, processing amounts of carbon which have been estimated as high as the 80% and the 260% of those synthesized by autotrophs in summer and winter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA, AWWA, WPCF, 1989. Standard methods for the examination of water and wastewater. In L. J. Clesceri, A. E. Greenberg and R. R. Trussel (eds), American Public Health Association, Washington DC 17.

    Google Scholar 

  • Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, E Raicich and A. Russo, 1996. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr., in press.

    Google Scholar 

  • Azam, F., D. C. Smith, G. F. Steward and A. Hagström, 1993. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 28: 167–179.

    Google Scholar 

  • Bell, R. T., 1990. An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of 3 H-thymidine. Limnol. Oceanogr. 35: 910–915.

    Google Scholar 

  • Biddanda, B., S. Opsahl and R. Benner, 1994. Plankton respiration and carbon flux through bacterioplankton on the Luisiana shelf. Limnol. Oceanogr. 39: 1259–1275.

    Google Scholar 

  • Chin-Leo, G. and R. Benner, 1992. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Ecol. Prog. Ser. 87: 87–103.

    Google Scholar 

  • Cho, B.C. and F. Azam, 1990. Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser. 63: 253–259.

    Google Scholar 

  • Degobbis, D. and M. Gilmartin, 1990. Nitrogen, phosphorus and biogenic silicon budgets for the northern Adriatic Sea, Oceanol. Acta 13: 31–45.

    Google Scholar 

  • Ducklow, H. W., 1982. Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during tidal destratification in the York River, Virginia, estuary. Limnol. Oceanogr. 27: 651–659.

    Google Scholar 

  • Ducklow, H. W. and C. A. Carlson, 1992. Oceanic bacterial production. In K.C. Marshall (ed.), Advances in Microbial Ecology, Plenum Press, New York, 12: 113–181.

    Google Scholar 

  • Ducklow, H. W. and F. K. Shiah, 1993. Bacterial production in estuaries. In T. E. Ford (ed.), Aquatic Microbiology: An Ecological Approach. Blackwell, Oxford 11: 261–287.

    Google Scholar 

  • Faganeli, J., M. Gacic, A. Malej and N. Smodlaka, 1989. Pelagic organic matter in the Adriatic sea in relation to winter hydro-graphic conditions. J. Plankton Res. 11: 1129–1141.

    Article  CAS  Google Scholar 

  • Franco, P., 1967. Condizioni idrologiche e produttività primaria nel Golfo di Venezia. Arch. Oceanogr. Limnol. 15: 69–83.

    Google Scholar 

  • Fuhrman, J. A., J. W. Ammerman and F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Google Scholar 

  • Fuhrman, J. A. and F Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109120.

    Google Scholar 

  • Gilmartin, M. and N. Revelante, 1983. The phytoplankton of the Adriatic sea: standing crop and primary production. Thalassia jugosl. 19: 173–188.

    Google Scholar 

  • Gonzales, J. M., E. B. Sherr, B. E Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. envir. Microbiol. 56: 583–589.

    Google Scholar 

  • Hagström A., E Azam, A. Andersson, J. Wikner and F. Rassoulzadegan, 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49: 171–178.

    Google Scholar 

  • Heip, C. H. R., N. K. Goosen, P. M. J. Herman, J. Kromkamp, J. J. Middelburg and K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev. 33: 1–149.

    Google Scholar 

  • Herndl, G. J., M. Kamer and P. Peduzzi, 1992. Floating mucilage in the Northern Adriatic Sea: the potential of a microbial ecological approach to solve the mystery. Sci. Total Envir. Suppl.: 525–538.

    Google Scholar 

  • Holligan, P. M., R. P. Harris, R. C. Newell, D. S. Harbour, R. N. Head, E. A. S. Linley, M. I. Lucas, P. R. G. Tranter and C. M. Weekley, 1984. Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar. Ecol. Prog. Ser. 14: 111–127.

    Google Scholar 

  • Iriberri, J., B. Ayo, M. Unanue, I. Barcina and L. Egea, 1993. Channeling of bacterioplankton production toward phagotrophic flagellates and ciliates under different seasonal conditions in a river. Microb. Ecol. 26: 111–124.

    Google Scholar 

  • Jacq, E. and D. Prieur, 1986. Les associations bactéries-matière particulaire en milieu pélagique cotier: exemples de variations spatiales et temporelles. GERBAM II Colloque Int. de Bactériologie marine–CNRS, Brest 1–5 Octobre 1984–IFREMER, Actes de Colloques 3: 229–236.

    Google Scholar 

  • Jahnke, R. A. and D. B. Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: a need for respiration rate measurements. Limnol. Oceanogr. 40: 436–441.

    Google Scholar 

  • Jakubczak, E. and H. Leclerc, 1980. Mesure de l’ATP bactérien par bioluminescence: étude critique des méthodes d’extraction. Ann. Biol. Clin. 38: 297–304.

    Google Scholar 

  • Karl, D. M, 1980. Cellular Nucleotide Measurements and Applica-

    Google Scholar 

  • tions in Microbial Ecology. Microbiol. Rev. 44: 739–796. Karner, M., D. Fuks and G. J. Herndl, 1992. Bacterial activity along a

    Google Scholar 

  • trophic gradient. Microb. Ecol. 24: 243–257.

    Google Scholar 

  • Kirchman, D., Y. Soto, F. Van Wambeck and M. Bianchi, 1989. Bacterial production in the Rhone River plume: effect of mixing on relationships among microbial assemblages. Mar. Ecol. Prog. Ser. 53: 267–275.

    Google Scholar 

  • Krstulovic, N., 1992. Bacterial biomass and production rates in the central Adriatic. Acta Adriat. 33: 49–65.

    Google Scholar 

  • Krstulovic, N., T. Pucher-Petkovic and M. Solic, 1995. The relation between bacterioplankton and phytoplankton production in the mid Adriatic Sea. Aquat. Microb. Ecol. 9: 41–45.

    Google Scholar 

  • Krstulovic, N. and S. Sobot, 1982. Proportion of bacteria in total plankton of the central Adriatic. Acta Adriat. 23: 47–52.

    Google Scholar 

  • Kveder, S. and S. Keckes, 1969. Hydrographie and biotical conditions in North Adriatic. V. Primary phytoplankton productivity. Thalassia jugosl. 5: 185–191.

    Google Scholar 

  • Kveder, S., N. Revelante, N. Smodlaka and A. Skrivancic, 1971. Some characterstics of phytoplankton and phytoplankton productivity in the Northern Adriatic. Thalassia jugosl. 7: 151–158.

    Google Scholar 

  • Lee, S. and J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. envir. Microbiol. 53: 1298–1303.

    Google Scholar 

  • Porter, K. G. and Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Revelante, N. and M. Gilmartin, 1976. The effect of Po river discharge on phytoplankton dynamics in the northern Adriatic sea. Mar. Biol. 34: 259–271.

    Google Scholar 

  • Revelante, N. and M. Gilmartin, 1992. The lateral advection of particulate organic matter from the Po delta region during summer stratification, and its implications for the Northern Adriatic. Estuar. coast. Shelf Sci. 35: 191–212.

    Google Scholar 

  • Revelante, N. and M. Gilmartin, 1995. The relative increase of larger phytoplankton in a subsurface chlorophyll maximum of the northern Adriatic Sea. J. Plankton Res. 17: 1535–1562.

    Article  CAS  Google Scholar 

  • Riemann, B., P. K. Bjornsen, S. Newell and R. Fallon, 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of 3H-thymidine. Limnol. Oceanogr. 32: 471–476.

    Google Scholar 

  • Shiah, F. K. and H. W. Ducklow, 1995. Regulation of bacterial abundance and production by substrate supply and bacterivory: a mesocosm study. Microb. Ecol. 30: 239–255.

    Google Scholar 

  • Solic, M. and N. Krstulovic, 1994. Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar. Ecol. Prog. Ser. 114: 219–235.

    Google Scholar 

  • Unanue, M., B. Ayo, I. Azùa, I. Barcina and J. Iriberri, 1992. Temporal variability of attached and free-living bacteria in coastal waters. Microb. Ecol. 23: 27–39.

    Google Scholar 

  • Vives-Rego, J., J. Martinez and J. Garcia-Lara, 1988. Assessment of bacterial production and mortality in Mediterranean coastal water. Estuar. Coast. Shelf Sci. 26: 331–336.

    Google Scholar 

  • Zoppini, A., 1990. Adenosintrifosfato cellulare (ATP). In S.I.B.M., Metodi nell’Ecologia del Plancton Marino. Nova Thalassia 11: 225–230.

    Google Scholar 

  • Zoppini, A., M. Pettine, C. Totti, A. Puddu, A. Artegiani and R. Pagnotta, 1995. Nutrients, standing crop and primary production in western coastal waters of the Adriatic Sea. Estuar. Coast. Shelf Sci. 41: 493–513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Puddu, A. et al. (1998). Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea). In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics