Skip to main content

Vertical migration of autotrophic micro-organisms during a vernal bloom at the coastal Baltic Sea — coexistence through niche separation

  • Chapter
Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling

Part of the book series: Developments in Hydrobiology ((DIHY,volume 127))

Abstract

Vertical migration of two dinoflagellate species (Peridiniella catenata and Scrippsiella hangoei) and a phototrophic ciliate (Mesodinium rubrum) were studied during the peak and decline of a vernal bloom at the SW coast of Finland. During the diel cycle, part of the populations of P. catenata and M. rubrum were observed in the deeper layers with elevated nutrient concentrations, while S. hangoei remained in the upper nutrient depleted mixed layer. Using a correspondence analysis the vertical distribution patterns of the species and chlorophyll a were examined over a temporal scale of hours and weeks. The vertical migration was reflected in much higher variability in the depth distribution of P. catenata and M. rubrum over a diel scale, compared to S. hangoei. The analysis revealed also significant differences in species specific depth distribution patterns over both time scales. It is discussed that the co-existence of the two dominant dinoflagellate species during the vernal bloom is due to niche separation through behavioural adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. M. and K. D. Stolzenbach, 1985. Selective retention of two dinoflagellates in a well-mixed estuarine embayment: the importance of diel vertical migration and surface avoidance. Mar. Ecol. Prog. Ser. 25: 39–50.

    Google Scholar 

  • Bhovichitra, M. and E. Swift, 1977. Light and dark uptake of nitrate and ammonium by large oceanic dinoflagellates: Pyrocystis noctiluca, Pyrocystis fusiformis, and Dissodinum lunula. Limnol. Oceanogr. 22: 73–83.

    Google Scholar 

  • Blasco, D., 1978. Observations on the diel migration of marine dinoflagellates off the Baja California coast. Mar. Biol. 46: 4147.

    Google Scholar 

  • Chapman, A. D. and L. A. Pfiester, 1995. The effects of temperature, irradiance, and nitrogen on the encystment and growth of the freshwater dinoflagellates Peridinium cinctum and P. willei in culture (Dinophyceae). J. Phycol. 31: 355–359.

    Google Scholar 

  • Cloern, J. E., B. E. Cole and S. W. Hager, 1994. Notes of a Mesodinium rubrum red tide in San Fransisco Bay ( California, USA). J. Plankton Res. 16: 1269–1276.

    Google Scholar 

  • Crawford, D. W., 1989. Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58: 161–174.

    Google Scholar 

  • Crawford, D. W. and D. A. Purdie, 1992. Evidence for avoidance of flushing from an estuary by planktonic, phototrophic ciliate. Mar. Ecol. Prog. Ser. 79: 256–265.

    Google Scholar 

  • Cullen, J. J., 1985. Diel vertical migration by dinoflagellates: roles of carbohydrate metabolism and behavioural flexibility. In M. A. Rankin (ed.), Migration: Mechanisms and Adaptive Significance. Contributions in Marine Science. Austin: 135–152.

    Google Scholar 

  • Cullen, J. J. and S. G. Horrigan, 1981. Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol. 62: 81–89.

    Google Scholar 

  • Dortch, Q., J. R. Clayton, S. S. Thoreson, S. L. Bressler and S. I. Ahmed, 1984. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol. 81: 237–250.

    Google Scholar 

  • Eppley, R. W., O. Holm-Hansen and J. D. H. Strickland, 1968. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4: 333–340.

    Article  Google Scholar 

  • Fielder, D. C., 1982. Zooplankton avoidance and reduced grazing responses to Gymnodinium splendens (Dinophyceae). Limnol. Oceanogr. 27: 961–965.

    Google Scholar 

  • Fraga, F., F. F. Pérez, F. G. Figueiras and A. E Rios, 1992. Stoichometric variations of N, P, C and 02 during a Gymnodinium catenatum red tide and their interpretation. Mar. Ecol. Prog. Ser. 87: 123–134.

    Google Scholar 

  • Fraga, S., S. M. Gallager and D. M. Anderson, 1989. Chain-forming dinoflagellates: an adaptation to red tides. In T. Okaichi, D. M. Anderson and T. Nemoto (eds), Red Tides: Biology, Environmental Science, and Toxicology. Elsevier. New York: 281–284.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt and K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie. Weinheim. 419 pp.

    Google Scholar 

  • Haapala, J., 1994. Uppwelling and its influence on nutrient concentrations in the coastal area of the Hanko peninsula, entrance of the Gulf of Finland. Estuar. coast. Shelf Sci. 38: 507–521.

    Google Scholar 

  • Heaney, S. I. and C. Butterwick, 1985. Comparative mechanisms of algal movement in relation to phytoplankton production. In M. A. Rankin (ed.), Migration: Mechanisms and Adaptive Significance. Contributions in Marine Science. Austin: 115–134.

    Google Scholar 

  • Heaney, S. I. and R. W. Eppley, 1981. Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. J. Plankton Res 3. 331-344.

    Google Scholar 

  • Heiskanen, A.-S., 1993. Mass encystment and sinking of dinoflagellates during a spring bloom. Mar. Biol. 116: 161–167.

    Google Scholar 

  • Heiskanen, A.-S., 1995. Contamination of sediment trap fluxes by vertically migrating phototrophic micro-organisms in the coastal Baltic Sea. Mar. Ecol. Prog. Ser. 122: 45–58.

    Google Scholar 

  • Heiskanen, A.-S. and K. Kononen, 1994. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Arch. Hydrobiol. 131: 175–198.

    Google Scholar 

  • Iwasa, Y., 1982. Vertical migration of zooplankton: a game between predatory and prey. Am. Nat. 120: 171–180.

    Google Scholar 

  • Kamykowski, D., 1981. Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients. Mar. Biol. 62: 57–64.

    Google Scholar 

  • Kamykowski, D., 1995. Trajectories of autotrophic marine dinoflagellates. J. Phycol. 31: 200–208.

    Article  Google Scholar 

  • Kamykowski, D. and S. A. McCollum, 1986. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8: 275–287.

    Article  Google Scholar 

  • Kamykowski, D. and S.-J. Zentara, 1976. The diurnal vertical migration of motile phytoplankton through temperature gradients. Limnol. Oceanogr. 22: 148–151.

    Google Scholar 

  • Kuosa, H., 1988. Horizontal mesoscale distribution of phytoplankton in the Tvärminne sea area, southern Finland. Hydrobiologia 161: 69–73.

    Article  Google Scholar 

  • Kuuppo-Leinikki, P., 1993. Horizontal distribution of photo-and heterotrophic micro-organisms on the coastal area of the northern Baltic Sea–a case study. J. Plankton Res. 15: 27–35.

    Article  Google Scholar 

  • Larsen, J., H. Kuosa, J. Ikävalko, K. Kivi and S. Hällfors, 1995. A redescription of Scrippsiella hangoei (Schiller) Comb. nov. - a `red tide’ forming dinoflagellate from the northern Baltic. Phycologia 34: 135–144.

    Google Scholar 

  • Lieberman, O. S. and M. Shilo, 1994. The physiological ecology of a freshwater dinoflagellate bloom population: vertical migration, nitrogen limitation, and nutrient uptake kinetics. J. Phycol. 30: 964–971.

    Article  Google Scholar 

  • Lindholm, T., 1985. Mesodinium rubrum - a unique photosynthetic ciliate. Adv. squat. Microbiol. 3: 1–48.

    Google Scholar 

  • Lindholm, T., 1992. Ecological role of depth maxima of phytoplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 33–45.

    Google Scholar 

  • Lindholm, T., 1995. Green water caused by Eutreptiella gymnastica in a stratified Baltic Sea inlet. In P. Lassus, G. Arzul, E. Erard, P. Gentien and C. Marcaillou (eds), Harmful Marine Algal Blooms. Proc., Sixth Int. Conference on Toxic Marine Phytoplankton, 1822.Oct. 1993. Intercept Ltd: 181–186.

    Google Scholar 

  • Lindholm, T. and A.-C. Mörk, 1990. Depth maxima of Mesodinium rubrum ( Lohmann) Hamburger and Buddenbrock - examples from a stratified Baltic sea inlet. Sarsia 75: 53–64.

    Google Scholar 

  • Lund, J. W. G., C. Kipling and E. D. Le Gren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 11: 143–170.

    Article  Google Scholar 

  • Niemi, A., 1975. Ecology of phytoplankton in the Tvärminne area SW coast of Finland. II. Primary production and environmental conditions in the archipelago zone and sea zone. Acta bot. fenn. 105: 1–73.

    Google Scholar 

  • Olesen, M., 1993. The fate of an early diatom spring bloom in the Kattegat. Ophelia 37: 51–66.

    Google Scholar 

  • Olsson, P. and E. Granéli, 1991. Observations on diurnal vertical migration and phased cell division for three coexisting marine dinoflagellates. J. Plankton Res. 13: 1313–1324.

    Article  Google Scholar 

  • Owen, R. W., S. F. Gianesella-Galvao and M. B. B. Kutner, 1992. Discrete, subsurface layers of the autotrophic ciliate Mesodinium rubrum off Brazil. J. Plankton Res. 14: 97–105.

    Article  Google Scholar 

  • Passow, U., 1991. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110: 455–463.

    Google Scholar 

  • Prego, R., 1992. Flows and budgets of nutrient salts and organic carbon in relation to a red tide in the Ria of Vigo (NW Spain). Mar. Ecol. Prog. Ser. 79: 289–302.

    Google Scholar 

  • Rasmussen, J. and K. Richardson, 1989. Response of Gonyaulax tamarensis to the presence of a pycnocline in an artificial water column. J. Plankton Res. 11: 747–762.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press. Cambridge, 385 pp.

    Google Scholar 

  • Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. mar. Biol. ann. Rev. 8: 353–414.

    Google Scholar 

  • Sommer, U., 1982. Vertical niche separation between two closely related planktonic flagellate species (Rhodomonas lens and Rhodomonas minuta v. nannoplanctica). J. Plankton Res. 4: 137142.

    Google Scholar 

  • Sommer, U., 1985. Differential migration of Cryptophyceae in lake Constance. In M. A. Rankin (ed.), Migration: Mechanisms and Adaptive Significance. Contributions in Marine Science. Austin: 166–175.

    Google Scholar 

  • Sommer, U., 1988. Some size relationships in phytoflagellate motility. Hydrobiologia 161: 125–131.

    Article  Google Scholar 

  • Tamminen, T., 1995. Nitrate and ammonium depletion rates and preferences during a Baltic spring bloom. Mar. Ecol. Prog. Ser. 120: 123–133.

    Google Scholar 

  • Thomas, W. H. and C. H. Gibson, 1990. Quantified small-scale turbulence inhibits a red-tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Res. 37: 1583–1593.

    Article  Google Scholar 

  • Throndsen, J., 1973. Motility in some marine nanoplankton flagellates. Norw. J. Zool. 21: 193–200.

    Google Scholar 

  • Tyler, M. A. and H. H. Seliger, 1978. Annual subsurface transport of a red tide dinoflagellate to its bloom area: water circulation pattern and organism distributions in the Chesapeake Bay. Limnol. Oceanogr. 23: 227–246.

    Google Scholar 

  • Tyler, M. A. and H. H. Seliger, 1981. Selection fora red tide organism: Physiological responses to the physical environment. Limnol. Oceanogr. 26: 310–324.

    Google Scholar 

  • Vernik, E. L., 1972. The statistics of subsampling. Limnol. Oceanogr. 16: [1971] 811–817.

    Google Scholar 

  • Viner, A. B., 1985. Thermal stability and phytoplankton distribution. Hydrobiologia 125: 47–69.

    Article  Google Scholar 

  • Waite, A., P. K. Bienfang and P. J. Harrison, 1992a. Spring bloom sedimentation in a subarctic ecosystem. I. Nutrient sensitivity. Mar. Biol. 114: 119–129.

    Google Scholar 

  • Waite, A., P. K. Bienfang and P. J. Harrison, 1992b. Spring bloom sedimentation in a subarctic ecosystem. II. Succession and sedimentation. Mar. Biol. 114: 131–138.

    Google Scholar 

  • Williams, J. A., 1996. Blooms of Mesodinium rubrum in Southampton Water–do they shape mesozooplankton distribution ? J. Plankton Res. 18: 1685–1697.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olli, K., Heiskanen, AS., Lohikari, K. (1998). Vertical migration of autotrophic micro-organisms during a vernal bloom at the coastal Baltic Sea — coexistence through niche separation. In: Tamminen, T., Kuosa, H. (eds) Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Developments in Hydrobiology, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1493-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1493-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5041-0

  • Online ISBN: 978-94-017-1493-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics