Skip to main content

Mach’s Principle and Einstein’s Theory of Gravitation

  • Chapter
Ernst Mach: Physicist and Philosopher

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 6))

Abstract

The increased interest of physicists in Einstein’s theory of gravitation over the past years has been accompanied by a number of discussions of Mach’s suggestion concerning a relation between inertial forces and distant stars. There has been, however, no accord on the mathematical formulation of Mach’s ideas and on their meaning in General Relativity. My purpose is to review, in the framework of the present-day understanding of Einstein’s theory, the changes in interpretation which Mach’s ideas have experienced and to sort out different statements collectively labeled as Mach’s principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Newton, Mathematical Principles of Natural Philosophy. Revised English translation, University of California Press, Berkeley, 1960, p. 6.

    Google Scholar 

  2. For the much earlier criticism of Newton’s absolute space by Huyghens, Leibniz and Berkeley see M. Jammer, Concepts of Space, Harper Torch-books, New York 1960, Chap. 4 and J. D. North, The Measure of the Universe, Clarendon Press, Oxford 1965, Chap. 16, Sec. 1.

    Google Scholar 

  3. E. Mach, Die Mechanik in ihrer Entwicklung, F. A. Brockhaus, Leipzig, 1889, p. 213, 216, 217.

    Google Scholar 

  4. Ibid., p. 218, 485.

    Google Scholar 

  5. Ibid., p. 215/216, 217, 219.

    Google Scholar 

  6. M. Bunge, Am. J. Phys. 34 (1966), 588.

    Google Scholar 

  7. F. Gürsey, Ann. Phys. (N.Y.) 24 (1963), 211.

    Google Scholar 

  8. F. R. Tangherlini, Nuovo Cim. Suppl. 20 (1961), 68.

    Google Scholar 

  9. H. Bondi, Cosmology, Cambridge University Press, 1961, p. 28.

    Google Scholar 

  10. V. W. Hughes in Gravitation and Relativity (ed. by H. Y. Chiu and W. Hoffmann), W. A. Benjamin, New York 1964, p. 106 (further quoted as G. A. R.).

    Google Scholar 

  11. M. Strauss, Synthese 18 (1968), 251.

    Google Scholar 

  12. F. A. E. Pirani, Heiv. Phys. Acta Suppl. 4 (1956), 199.

    Google Scholar 

  13. B. Bertotti in Evidence for Gravitational Theories (ed. by C. Moller), Academic Press, New York and London 1962, p. 179 (further quoted as E.G.T.).

    Google Scholar 

  14. H. Y. Chiu, W. F. Hoffman, in G.A.R., p. xx. Mach himself seems to have thought that the influence of nearby matter cancels out. Cf. ref. 3, p. 219.

    Google Scholar 

  15. P. Havas, Rev. Mod. Phys. 36 (1964), 938. See also P. Havas, ‘Foundation Problems in General Relativity’ in Delaware Seminar in the Foundations of Physics (ed. by M. Bunge), Springer-Verlag, Berlin, 1967, p. 124.

    Google Scholar 

  16. A. Trautman, in ‘Lectures on General Relativity’, Brandeis Summer Institute in Theoretical Physics 1964, vol. I, Englewood Cliffs, N.J., 1965, p. 104, 115 (further quoted as B.G.R.).

    Google Scholar 

  17. B. Bertotti, D. Brill, R. Krotkov, in Gravitation (ed. by L. Witten), John Wiley, New York, 1962, p. 4 (further quoted as G.I.C.R.).

    Google Scholar 

  18. A. Trautman, in B.G.R. ref. 15, p. 137.

    Google Scholar 

  19. A. D. Fokker, Proc. K. Akad. Wet. Amsterdam 23 (1920), No. 5.

    Google Scholar 

  20. For extensive discussions of Einstein’s interpretation of Mach’s ideas compare: H. Hönl, Physikertagung Wien 1961, p. 88–105, Physik Verlag, Mosbach, 1962; Wissenschaftl. Zeitschr. d. Friedr. Schiller Univ. Jena., Mathem. Naturw. R. 15 25–36 (1966); Einstein Symposium 1965, p. 239–276, Akademie-Verlag, Berlin, 1966.

    Google Scholar 

  21. A. Einstein, The Meaning of Relativity, Princeton University Press, 1955, p. 56.

    Google Scholar 

  22. Ibid., p. 99.

    Google Scholar 

  23. Ibid., p. 100.

    Google Scholar 

  24. There seems to exist disagreement about the magnitude of the first effect, however. Compare H. Dicke, ‘The Many Faces of Mach’, in G.A.R. p. 123–124 and H. Dehnen, H. Hönl and K. Westpfahl, Ann. Physik 6 (1960), 388.

    Google Scholar 

  25. Reference 1, p. 10–11.

    Google Scholar 

  26. There are indications that the Kerr metric (R. P. Kerr, Phys. Rev. Letters 11 (1963), 237) describes the exterior field of a finite, axially symmetric, rotating body. However, the identification with a definite material system of a matching interior solution still seems to be open. Compare W. C. Hernandez, Phys. Rev. 159 (1967), 1070; 167 (1968), 1180 and V. De La Cruz and W. Israel, Phys. Rev. 170 (1968), 1187.

    Google Scholar 

  27. H. Thirring, Phys. Z. 19 (1918), 33; 22 (1921), 29; H. Thirring and J. Lense, Phys. Z. 19 (1918), 156.

    Google Scholar 

  28. See also the note of C. Cattaneo, Ac. Naz. Lincei Rend., Sc. Fis. math. 32 (1962), 346, on the rigorous gravitational field of a rotating mass shell. However, we cannot accept his conclusions concerning Mach’s principle.

    Google Scholar 

  29. D. Brill and J. Cohen, Phys. Rev. 143 (1966), 1012; D. Brill and J. Cohen, Nuovo Cim. 56B (1968), 209.

    Google Scholar 

  30. This result was also obtained for a rotating fluid sphere by H. Hönl and H. Dehnen, Ann. Physik 14 (1964), 293.

    Google Scholar 

  31. H. Hönl and Ch. Soergel-Fabricius, Z. Physik 163 (1961), 571.

    Google Scholar 

  32. H. Hönl and H. Dehnen, Z. Physik 166 (1962), 544. H. Dehnen, Z. Physik 166 (1962), 599.

    Google Scholar 

  33. J. L. Synge, Proc. Lond. Math. Soc. 43 (1937), 376.

    Google Scholar 

  34. K. Gödel, Rev. Mod. Phys. 31 (1949), 447.

    Google Scholar 

  35. K. Gödel, Proceedings of the International Congress of Mathematicians 1950, vol. I p. 180, American Mathematical Soc. Providence 1952.

    Google Scholar 

  36. I. Ozsvath and E. Schücking, Nature 193 (1962), 1168.

    Google Scholar 

  37. Reference 20, p. 103 and Letter of Einstein to Mach (1913) pubi. by H. Hönl, Phys. Bl. 11 (1960), 571.

    Google Scholar 

  38. See, for example N. Rosen, Ann. Phys. (N.Y.) 35 (1965), 426.

    Google Scholar 

  39. For static fields compare J. Ehlers and W. Kundt, ‘Exact Solutions of the Gravitational Field Equations’, G.I. C.R. (ref. 16), p. 68–69. 85. Mass Aspect: H. Bondi, M.G.J. van der Burg, and A. W. K. Metzner, Proc. Roy. Soc. (London) A269 (1962), 21. For the mass of a gravitational wave pulse see D. R. Brill, Ann. Phys. (N.Y.) 7 (1959), 466.

    Google Scholar 

  40. M. Mathisson, Acta Phys. Polon. 6 (1937), 163, 218; A. Papapetrou, Proc. Roy. Soc. (London) A209 (1952), 248.

    Google Scholar 

  41. G. Beck, Z. Physik 33 (1925), 713.

    Google Scholar 

  42. Compare Einstein’s autobiographical notes in Albert Einstein:Philosopher-Scientist (ed. by P. A. Schilpp), Evanston, III., 1949, p. 29.

    Google Scholar 

  43. A. Einstein, Sitzber. Preuss. Akad. Wiss. 142 (1917).

    Google Scholar 

  44. Comp. e.g. W. Thirring, Fortschr. Physik 7 (1959), 80.

    Google Scholar 

  45. J. Ehlers and W. Kundt, ref. 38 p. 49–99; The plane-fronted waves are the vacuum null fields which possess a normal, non-shearing and non-expanding ray congruence.

    Google Scholar 

  46. A Riemannian manifold is called geodetically complete if every geodesic has infinite length in both directions. For a discussion of various concepts of completeness compare W. Kundt, Z. Physik 172 (1963), 488, and ref. 60 (Fierz and Jost).

    Google Scholar 

  47. For a review see A. Trautman, Conservation Laws in General Relativity in GICR, p. 188. Compare also C. Cattaneo, Ann. Inst. Henri Poincaré 4 (1966), 1.

    Google Scholar 

  48. C. Moller, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Skrifter 1 (1961), No. 10; Mat.-Fys. Medd. 34 (1964), No. 3.

    Google Scholar 

  49. N. Rosen, Phys. Rev. 57 (1940), 147, 150. M. Kohler, Z. Physik 131 (1952), 571; 134 (1953), 286, 306.

    Google Scholar 

  50. For a discussion see A. Grünbaum, Philosophical Problems of Space and Time, A. Knopf, New York 1963, Chap. 14; and Phil. Review 66 (1957), 525.

    Google Scholar 

  51. A Einstein, Preface to M. Jammer, ref. 2, p. XV.

    Google Scholar 

  52. See ref. 42 or ref. 20 p. 108.

    Google Scholar 

  53. Weyl’s postulate: The particles representing the nebulae lie in space-time on a bundle of geodesics diverging from a point in the past. Cosmological Principle: The universe presents the same aspect from every point in space. Perfect Cosmological Principle: The universe presents the same aspect from every point in space at any time.

    Google Scholar 

  54. O. Klein in Recent Developments in General Relativity, Pergamon Press, Oxford, 1962, p. 293; H. Hönl and H. Dehnen, Ann. Physik 11 (1963), 209.

    Google Scholar 

  55. A. S. Petrov, Einstein-Räume, Akademie Verlag, Berlin, 1964, p. 357.

    Google Scholar 

  56. H. Hönl, Z. Naturforsch. 8a (1953), 2.

    Google Scholar 

  57. J. A. Wheeler in La structure et l’évolution de l’univers, R. Stoops, Bruxelles, 1959, p. 49–51.

    Google Scholar 

  58. J. A. Wheeler, ‘Mach’s principle as boundary condition for Einstein’s equations’, in Boulder Lectures in Theoretical Physics 1962, Interscience, 1963, p. 528; GAR p. 303; in Conférence Internationale sur les théories relativistes de la gravitation, Warsaw 1962, Gauthier-Villars, Paris, 1964, p. 223.

    Google Scholar 

  59. See Y. Bruhat, ‘The Cauchy Problem in Gravitation’, in GICR (ref. 16) p. 130.

    Google Scholar 

  60. The existence of the 4-geometry described is proven by theorem 1 of R. P. Geroch, J. Math. Phys. 8 (1967), 782.

    Google Scholar 

  61. M. Fierz and R. Jost, Hely. Phys. Acta 38 (1965), 138; N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1967, p. 207.

    Google Scholar 

  62. H. Hönl and H. Dehnen, Ann. Physik 11 (1963), 201; Z. Physik 191 (1966), 313; Z. Physik 206 (1967), 492.

    Google Scholar 

  63. For the detailed description taking into account the distinction between field strength Fat and field intensities Gao and establishing constitutive equations see ref. 61. (Z. Physik 191). One gets Gae = (20–1 Fa t , — 3 (20 -1 ut aFoj y e. (A(at,1 = Aat, - At,a)

    Google Scholar 

  64. Which coincides, of course, with Gao directly calculated from the chosen ua.

    Google Scholar 

  65. See J. Ehlers and E. Schücking, Z. Physik 206 (1967), 483.

    Google Scholar 

  66. See ref. 57 (GAR) p. 330.

    Google Scholar 

  67. Ref. 61 (Z. Physik 206), p. 501, footnote.

    Google Scholar 

  68. For a discussion of the problem cf. W. Rinow, Die innere Geometrie der metrischen Räume, Berlin, 1961. Some general results for compact differentiable manifolds are found in ref. 60 (Steenrod) while results for homogeneous spaces of constant curvature (and arbitrary signature) are given by J. A. Wolf, Spaces of Constant Curvature,McGraw-Hill, New York, 1967. A discussion of flat Lorentz 3-manifolds is found in L. Auslander and L. Markus, Amer. Math. Soc. Memoir No. 30, Providence 1959.

    Google Scholar 

  69. P. Szekeres, J. Math. Phys. 6 (1965) 1387.

    Google Scholar 

  70. J. M. Cohen, ‘Gravitational Collapse of Rotating Bodies’, Institute for Space Studies, Goddard Space Flight Center, preprint March 1968.

    Google Scholar 

  71. Ya. B. Zeldovich, in Advances in Astronomy and Astrophysics, vol. III, Academic Press, New York, 1965, p. 368.

    Google Scholar 

  72. See for example D. W. Schiama, Monthly Notices Roy. Astron. Soc. 113 (1953) 34 - The Unity of the Universe, Faber and Faber, London, 1959, Chap. 9. W. Davidson, Monthly Notices Roy. Astron. Soc. 117 (1957), 212. R. Dicke, in EGT (ref. 12) p. 36.

    Google Scholar 

  73. B. L. Altshuler, JETP 24 (1967), 766; D. Lynden-Bell, Monthly Notices Roy. Astron. Soc. 135 (1967), 413.

    Google Scholar 

  74. D. W. Sciama and P. C. Waylen, ‘A Generally Covariant Formulation of Einstein’s Field Equations’, preprint, University of Cambridge, England (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goenner, H. (1970). Mach’s Principle and Einstein’s Theory of Gravitation. In: Cohen, R.S., Seeger, R.J. (eds) Ernst Mach: Physicist and Philosopher. Boston Studies in the Philosophy of Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1462-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1462-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8318-0

  • Online ISBN: 978-94-017-1462-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics