Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 78))

  • 454 Accesses

Abstract

We denote by \({\tilde F_B} = {\tilde F_B}(\Omega ,F,m)\) the space of all measurable B-valued functions with the seminorm

$$|f|{P_b} = \mathop {\inf }\limits_{\alpha \geqslant 0} arctam[\alpha + m(\{ \omega :|f(\omega )|\} )];$$

convergence in \({\tilde F_R}\) is the same as convergence in m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. Birkhoff G.D. Proof of the ergodic theorem. 1931, v. 17, p. 656–660.

    Google Scholar 

  2. Chevalley C. Zu Birkhoffs Lösung des Ergoden-problems. -Math. Ann., 1932, v.107, p.485–488.

    Google Scholar 

  3. Kolmogorov A.N. A simplified proof of the Birkhoff- Khintchine ergodic theorem. -Uspekhi Matemat. Nauk, 1938, No.5 (in Russian).

    Google Scholar 

  4. Yosida K. Ergodic theorems of Birkhgff Khintchines type. — Jap. J. Math., 1940, v.17, p.31–36.

    Google Scholar 

  5. Yosida K. An abstract treatment of the individual ergodic theorem. — Proc. Imp. Acad. Tokyo, 1940, v.16, p.280–284.

    Google Scholar 

  6. Riesz F. Sur la théorie ergodique. — Comm. Math. Helv., 1945, v.17, p.221–239.

    Google Scholar 

  7. Riesz F. On a recent generalization of G.D. Birkhoff’s ergodic theorem. — Acta Unv. Szeged. Sect. Math., 1948, v.11, p.193–200.

    Google Scholar 

  8. Doob J.L. Stochastic processes. New-York - John Wiley, Sons London - Chapman, 1953.

    MATH  Google Scholar 

  9. Gnedenko B. The Theory of Probability. “Mir”, Moscow, 1988.

    Google Scholar 

  10. Hahn F. — see Auslander L., Blum J.R. Hahn L.S. — see Blum J.R. Halmos P.R. Measure Theory. New York, 1950.

    Google Scholar 

  11. Cornfeld I.P., Fomin S.V., Sinai Ya.G. Ergodic theory. — Grundlehren der Mathematischen Wissenschaften, v. 245, Berlin—Heidelberg—New York, Springer, 1982.

    Google Scholar 

  12. Pitt H.R. Some generalizations of the ergodic theorem. — Proc. Cambridge Phil. Soc., 1942, v.38, p.325–343.

    Google Scholar 

  13. Calderón A.P. A general ergodic theorem. — Ann. of Math., 1953, v. 58, No. 1, p. 182–191.

    MATH  Google Scholar 

  14. Cotlar M. A unified theory of Silbert transforms and ergodic theorems. — Rev. Math. Cuyana, 1956, v.1, p.105–167.

    Google Scholar 

  15. Reich J. (see also Blum J.R.) Random ergodic sequences on local groups. — Transactions of the American Math. Soc., 1981, v.265, No.1, p.59–68.

    Google Scholar 

  16. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Ergodic theorems for general dynamic systems. — Dokl. Akad. Nauk SSSR, 1967, v.176, No.4, p.790–793. (English translation: Soviet. Math. Dokl., 1967, v.8, No.5, p.1213–1216.)

    Google Scholar 

  17. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Ergodic theorems for general dynamic systems. — Trudy Moskovskogo Matematicheskogo obshchestva, 1972, v.26, p.95–132. (English c/c translation: p.94–132.)

    Google Scholar 

  18. Bewley T. Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions. — Ann. Inst. H. Poincaré, 1971, v.7, No.4, p.283–291.

    Google Scholar 

  19. Chatard J. Application des propriétés de moyenne d’un groupe localement compact â la théorie ergodique. - Ann. Inst. Poincaré, 1970, VI. Chatterji S.D.

    Google Scholar 

  20. Garonas E.A., Tempelman A.A. Ergodic Theorems for Homogeneous Random Measures and Signed Measures on Groups. In: III international Vilnius conference on probability theory and mathematical statistics. Summaries. — Vilnius, 1981.

    Google Scholar 

  21. Emerson W.R. (see also Greenleaf F.P.) The pointwise ergodic theorem for amenable groups. - American Journal of Mathematics, 1974, v.96, No.3, p.472–478.

    Google Scholar 

  22. Ornstein D.S., Weiss B. (see also Chacon R.V.) Entropy and isomorphism theorems for actions of amenable groups. J.d’Analyse Mathématique, 1987, v. 48, p. 1–141.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pitckel B.S., Stepin A.M. On the equidistribution property of commutative groups of metric automorphisms. — Dokl. A.ad. Nauk SSSR, 1971, v. 198, No. 5, p. 1021–1024 (in Russian).

    Google Scholar 

  24. Jones R.L (see also Bellow A.) Jones R.L. Ergodic averages on spheres. — To appear in “J. d’Analyse Mathématique”.

    Google Scholar 

  25. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Ergodic theorems for general dynamic systems. — Dokl. Akad. Nauk SSSR, 1967, v.176, No.4, p.790–793. (English translation: Soviet. Math. Dokl., 1967, v.8, No.5, p.1213–1216.)

    Google Scholar 

  26. Oseledec V.I. Markov chains, skew products and ergodic theorems for “general” dynamical systems. - Teoriya veroyatnostei i ee primeneniya, 1965, v.10, No.3, p.551–557.

    Google Scholar 

  27. Taylor K.–see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Generalization of a theorem due to Hopf. — Teoriya Veroyatnostei i ee Primeneniya, 1972, v. 17, No. 2, p. 380–383 (in Russian).

    Google Scholar 

  28. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Ergodic theorems on groups. - Vilnius, Mokslas, 1986.

    Google Scholar 

  29. Greenleaf F.P., Emerson W.R. Group structure and the pointwise ergodic theorem for connected amenable groups. — Advances in Math., 1974, v. 14, p. 153–172.

    MathSciNet  MATH  Google Scholar 

  30. Vershik A.M., Kaimanovich V.A. Random walks in groups: the boarder, entropy, uniform distribution. - Dokl. Akad. Nauk SSSR, 1979, v.249, p.15–18 (in Russian). Vilenkin N.Ya. (see also Gel’fand I.M.)

    Google Scholar 

  31. Gaposhkin V.F. On the strong law of large numbers for wide—sense stationary processes and sequences. — Teoriya Veroyatn. i ee Primen., 1973, v.18, No.2, p.388–392 (in Russian).

    Google Scholar 

  32. Gaposhkin V.F. Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields. — Doklady Akademii Nauk SSSR, 1975, v.223, No.5, p.1009–1013 (in Russian).

    Google Scholar 

  33. Gaposhkin V.F. Explicit estimates of the rate of convergence in the strong law of large numbers for some classes of wide—sense stationary sequences and processes. — Uspekhi Matem. Nauk, 1976, v.31, p.233–234 (in Russian).

    Google Scholar 

  34. Gaposhkin V.F. Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields. Teoriya Veroyatn. i ee Primenen., 1977, v.22, p.295–319 (in Russian).

    Google Scholar 

  35. Gaposhkin V.F. The local ergodic theorem for groups of unitary operators and second—order stationary processes. Matem. Sbornik, 1980, v.111, p.249–265 (in Russian).

    Google Scholar 

  36. Gaposhkin V.F. On the individual ergodic theorem for normal operators. — Funkc. Ana liz i ego Prilozh., 1981, v.15, No.1, p.18–22 (in Russian).

    Google Scholar 

  37. Brard R. — see Blanc—Lapierre A. Bray G. Théorèmes ergodiques de convergence en moyenne. — C.R. Acad. Sci., 1968, v. 267, No. 12, p. 418–420.

    Google Scholar 

  38. Blanc—Lapierre A., Fortet R. Sur la loi forte des grands nombres. — C.R. Acad. Sci. Paris, 1968, v. 267A, p. 740–743.

    Google Scholar 

  39. Tortrat A. - see Blanc-Lapierre A. Tutubalin V.N. - see Karpelevich F.I. Ulenbek J., Ford J. Lectures On Statistical Mechanics. 1965.

    Google Scholar 

  40. Verbickaja I.N. On conditions of validity of strong law members to wide-sense stationary processes. - Teoriya Veroyatnostei i ee Primeneniya, 1966, v.11, No.4, p.715–720.

    Google Scholar 

  41. Yurinsky V.V. A strong of large numbers for homogeneous random fields. —Matemat. Zametki, 1974, v.16, p.141–148 (in Russian).

    Google Scholar 

  42. Savichev A.O., Tempelman A.A. Abstract martingale convergence theorems. - Pacific J. Math., 1961, v. 11, p. 347–374.

    Google Scholar 

  43. Gaposhkin V.F. Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields. Teoriya Veroyatn. i ee Primenen., 1977, v.22, p.295–319 (in Russian).

    Google Scholar 

  44. Beck A. Une loi forte des grandes nombres dans des espaces de Banach uniformément convexes. - Ann. Inst. H. Poincaré, 1958, v.16, p.35–45.

    Google Scholar 

  45. Beck A. A convexity condition in Banach spaces and the strong law of large numbers. - Proc. Amer. Math. Soc., 1962, v.13.

    Google Scholar 

  46. Beck A. On the strong law of large numbers. Ergodic Theory,ed. by F.B.Wright, N.Y.-London Academic Press, 1963, p.21–54.

    Google Scholar 

  47. Beck A., Warren P. Strong laws of large numbers for weakly orthogonal sequences of Banach space-valued random variables. - Ann. Probab., 1979, v. 2, No. 5, p. 918–925.

    Article  Google Scholar 

  48. Beck A., Schwartz J.T. A vector—valued random ergodictheorem. — Proc. Amer. Math. — Ergodic theory and dynamical ergodic theory. — Contemporary Soc., 1957, v. 8, p. 1049–1059.

    Google Scholar 

  49. Goldsheid I.Ya. A nonequilibrium entropy for dynamical systems. — J. Statist. Physics, 1981, v.24, p.325–343.

    Google Scholar 

  50. Mourier E. (see also Fortet R.) Lois des grands nombres et théorie ergodique. — C.R. Acad. Sci. Paris, 1951, v.232, p.923–925.

    Google Scholar 

  51. Mourier E. (see also Fortet R.) Éléments aléatoires dans un espace de Banach. — Ann. Inst. H. Poincaré, 1953, v.13, p.161–244.

    Google Scholar 

  52. Keane M.–see Brunel A. Kerstan J.–see Matthes K. Kieffer I.C. A generalized Shannon–McMillan theorem for the action of an amenable group on a probability space. - The Ann. of Probab., 1975, v. 3, p. 1031–1037.

    Article  Google Scholar 

  53. Deo C.M. Strong laws of large numbers for weakly stationary random fields. — Sankhya, 1978, v.40, Ser A, No.1, p.19–27.

    Google Scholar 

  54. Dunford N. An ergodic theorem for n-parameter groups. - Proc. Nat. Acad. Sci. U.S.A., 1939, v.25, p.195–196.

    Google Scholar 

  55. Dang—Ngoc N. — see Conze J.P. Day M.M. Fixed-point theorems for compact convex sets. — Illinois J.of Math., 1961, v. 5, p. 585–590.

    Google Scholar 

  56. Novikov C.P. see Doubrovine B.A. Olsen J.H. (see also Jones R.L., Chacon R.V.) Multiple sequence ergodic theorem. - Canadian Math. Bull., 1983, v. 26 (4), p. 493–497.

    Article  MathSciNet  Google Scholar 

  57. Novikov C.P. see Doubrovine B.A. Olsen J.H. (see also Jones R.L., Chacon R.V.) Two consequences of Brunel’s theorem. - To appear in “Canadian Math. Bull.”

    Google Scholar 

  58. Reich J. (see also Blum J.R.) Random ergodic sequences on local groups. — Transactions of the American Math. Soc., 1981, v.265, No.1, p.59–68.

    Google Scholar 

  59. Ryll-Nardzewski C. Generalized random ergodic theorems and weakly almost periodic functions. - Bull. de l’Acad. Polonaise de Sciences Serie des Sci. Math., Astr., Phys., 1962, v.10, No.5, p.271–275.

    Google Scholar 

  60. Taylor K.–see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Consistent linear regression estimates. — In: III International Symposium on Information Theory. Summaries. Tallin, 1973, p. 129–132.

    Google Scholar 

  61. Taylor K.–see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Consistent and strongly consistent linear regression estimates. — In: Proceedings of the Soviet Union Symposium on Statistics of Random Processes. Kiev, 1973, p. 188–191.

    Google Scholar 

  62. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Ergodic theorems for amplitude—modulated homogeneous random fields. — Lietuvos Matematikos Rinkinys, 1974, v.14, No.4, p.221229 (in Russian).

    Google Scholar 

  63. Taylor K. - see Bagget L. Tempelman A.A. (see also Garonas E., Gorbis A., Savichev A.) Convergence and consistency of regression estimates. — Doctor Thesis, Vilnius, 1975, p. 290 (in Russian).

    Google Scholar 

  64. Zygmund A. An individual ergodic theorem for noncommutative transformations. — Acta Sci. Math. Szeged., 1951, v.14, p.103–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tempelman, A. (1992). Pointwise Ergodic Theorems. In: Ergodic Theorems for Group Actions. Mathematics and Its Applications, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1460-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1460-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4155-5

  • Online ISBN: 978-94-017-1460-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics