Skip to main content

Why We Don’t Need Quantum Planetary Dynamics: Decoherence and the Correspondence Principle for Chaotic Systems

  • Chapter
Epistemological and Experimental Perspectives on Quantum Physics

Part of the book series: Vienna Circle Institute Yearbook [1999] ((VCIY,volume 7))

Abstract

Is the correspondence principle valid for quantum systems whose classical counterparts are chaotic? This question has been at the center of a debate that has taken place in recent years within the community of scientists interested in quantum chaos [4,17–20,33]. In this paper we will argue that the apparent failure of the correspondence principle is cured by decoherence, which is an essential ingredient to properly define a classical limit. We shall begin by schematically presenting the problem. Subsequently, we shall sketch the solution provided by decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Casati and B. V. Chirikov, Comment on Decoherence, chaos and the second law, Phys. Rev. Lett, 75, 1995, p. 350.

    Article  Google Scholar 

  2. W. H. Zurek and J. P. Paz, Reply to Casati and Chirikov, Phys. Rev. Lett, 75, 1995, p. 351.

    Article  Google Scholar 

  3. G. R Berman and G. M. Zaslaysky, Physica, A91, 1978, p. 450.

    Article  Google Scholar 

  4. see M. B. Berry, “Introductory remarks”, in Adriatico Research Conference and Miniworkshop on Quantum Chaos, edited by H. A. Cerdeira et al., Singapore: Word Scientific 1991.

    Google Scholar 

  5. J. Wisdom, Icarus, 72, 1987, p. 241.

    Article  Google Scholar 

  6. S. Habib, K. Shizum and W.H. Zurek, Phys. Rev. Lett, 80, 1998, p. 4361.

    Article  Google Scholar 

  7. W.H. Zurek, J.P. Paz, Physica, D83, 1995, p. 300.

    Google Scholar 

  8. J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton University Press: Princeton 1983.

    Google Scholar 

  9. J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek, Eds., Physical Origins of Time Asymmetry, Cambridge University Press 1994.

    Google Scholar 

  10. R. Busch, P. Lahti, and R. Mittelstaedt, eds., Quantum Measurements, Irreversibility, and the Physics of Information, World Scientific: Singapore 1994.

    Google Scholar 

  11. W. H. Zurek, Physics Today, 44, 1991, p. 36.

    Article  Google Scholar 

  12. W. H. Zurek, Prog. Theor. Phys. 89, 1993, p. 281.

    Google Scholar 

  13. W. H. Zurek, S. Habib and J.P. Paz, Phys. Rev. Lett., 70, 1993, p. 1187.

    Article  Google Scholar 

  14. W. H. Zurek and J. P. Paz, Phys. Rev. Lett, 72, 1994, p. 2508.

    Article  Google Scholar 

  15. J. R. Paz, S. Habib and W. H. Zurek, Phys. Rev, D 47, 1993, p. 488.

    Article  Google Scholar 

  16. B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev, D 45, 1992, p.2843; ibid, D 47, 1993, p. 1576.

    Article  Google Scholar 

  17. B.V. Chirikov, Phys. Rep, 52, 1979, p.263; G. M. Zaslaysky, Phys. Rep, 80, 1981, p.157; M-J. Giannoni, A. Voros, J. Zinn-Justin, Eds., Chaos and Quantum Physics, Les Houches Lectures LII, Amsterdam: North Holland 1991.

    Google Scholar 

  18. J. Ford and G. Mantica, Am. J. Phys, 60, 1992, p. 1086.

    Article  Google Scholar 

  19. See, e.g. G. Ioos, R. H. G. Hellmann and R. Stora Eds., Chaotic Behavior in Deterministic Systems, Les Houches Lectures XXXVI, Amsterdam: North Holland 1983; R. S. Mc Kay and J. O. Meiss Eds., Hamiltonian Dynamical Systems, Philadelphia: Hilger 1987.

    Google Scholar 

  20. M. B. Berry, Proc. Roy. Soc. London, A413, 1987, p.183; M. Gutzwiller, Chaos in Classical and Quantum Mechanics, New York: Springer Verlag 1990; F. Haake, Quantum Signature of Chaos, New York: Springer Verlag 1990, and references therein.

    Google Scholar 

  21. W. H. Zurek, Phys. Rev, D24, 1981, p.1516; ibid, D26, 1982, p. 1862.

    Google Scholar 

  22. E. Joos and H. D. Zeh, Zeits. Phys, B59, 1985, p. 229.

    Google Scholar 

  23. W. H. Zurek, Physics Today, 46, 1993, p. 81.

    Google Scholar 

  24. W. H. Zurek, Phil. Trans. Roy. Soc. London, A356, 1999, p. 1793.

    Google Scholar 

  25. W.H. Zurek, Physica Scripta, T76, 1998, p. 186.

    Google Scholar 

  26. W. H. Zurek, pp. 145–149 in Frontiers of Nonequilibrium Statistical Mechanics, G. T. Moore and M. O. Scully Eds., New York: Plenum 1986.

    Google Scholar 

  27. M. Gell-Mann and J. B. Hartle, Phys. Rev., D47, 1993, p. 3345.

    Google Scholar 

  28. A. O. Caldeira and A. J. Leggett, Physica, 121A, 1993, p.587; W. G. Unruh and W. H. Zurek, Phys Rev., D40, 1989, p. 1071; B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev., D45, 1992, p.2843; ibid, D47, 1993, p. 1576.

    Google Scholar 

  29. W. H. Louise11, Quantum Statistical Properties of Radiation, New York: Wiley 1973.

    Google Scholar 

  30. J. von Neumann, Mathematical Foundations of Quantum Mechanics, English translation by R. T. Beyer, Princeton: Princeton Univ. Press 1955); H. D. Zeh, The Direction of Time, New York: Springer—Verlag 1991.

    Google Scholar 

  31. D.H. Feng, B.L. Hug (Eds.), Quantum-Classical Correspondence, Cambridge: International Press 1997. J. M. Blatt expressed a similar suspicion in a compelling, although less rigorous and completely classical paper, Progr. Theor. Phys., 22, 1959, p. 745.

    Google Scholar 

  32. G.J. Milburn and C.A. Holmes, Phys. Rev. Lett., 56, 1986, p. 2237.

    Article  Google Scholar 

  33. G. Casati, B. V. Chirikov, F. M. Izraileev and J. Ford, Lectures Notes in Physics, 93, New York: Springer—Verlag 1979.

    Google Scholar 

  34. T. Dittrich and R. Graham, Z.,/ür Phys., B62, 1986, p.515; T. Dittrich and R. Graham, Ann. Phys. (NY), 200, 1990, p.363; T. Dittrich and R. Graham, “Quantum chaos in open systems”, in Information Dynamics, H. Atmanspacher and H. Scheingraber, Eds., NATO ASI Series„ B256, 289, Plenum 1990, and references therein.

    Google Scholar 

  35. M. Hillery, R.F. O’Connell, M.O. Scully and E. Wigner, Phys. Rep, 106, 1984, p. 121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zurek, W.H., Paz, J.P. (1999). Why We Don’t Need Quantum Planetary Dynamics: Decoherence and the Correspondence Principle for Chaotic Systems. In: Greenberger, D., Reiter, W.L., Zeilinger, A. (eds) Epistemological and Experimental Perspectives on Quantum Physics. Vienna Circle Institute Yearbook [1999], vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1454-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1454-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5354-1

  • Online ISBN: 978-94-017-1454-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics