Skip to main content

Quantum Engineering with Atoms and Photons in a Cavity

  • Chapter

Part of the book series: Vienna Circle Institute Yearbook [1999] ((VCIY,volume 7))

Abstract

Rydberg atoms crossing one by one a high Q microwave cavity can be entangled to the field stored in this cavity, leading to fundamental tests in quantum physics. The amplitudes of the quantum states superpositions involved in the entangled states can be controlled and adjusted at will, realizing a kind of engineered entanglement at variance with the spontaneous entanglement achieved in photon cascade or down conversion experiments. The atomic coupling to the cavity field can be either resonant or dispersive. In the resonant case, entanglement results from the reversible quantum Rabi oscillation which coherently mixes atomic energy and photon number eigenstates. In the dispersive case, the atom and field undergo reciprocal frequency shifts, which produces phase dependent entanglement. By combining resonant and dispersive techniques, three or more atoms could be entangled together. The atom-cavity system is also ideal to entangle an atom to a mesoscopic coherent field made of several photons. Superpositions of coherent fields of the kind imagined by Schrödinger in his famous cat metaphor have been generated and studied. The decoherence of these states has been observed, providing new insight into the quantum-classical boundary. The generalization of these experiments to complex systems, involving more atoms, more photons and more cavities, is under way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.Haroche and J.M. Raimond, in: Cavity Quantum Electrodynamics, P.Berman (Ed.), New York: Academic Press, 1994, pp.123–170; S.Haroche, in: Fundamental Systems in Quantum Optics, les Houches session LIII J. Dalibard, J.M. Raimond et J. Zinn Justin (Eds.), Elsevier Science Publishers 1992, pp. 767–940.

    Google Scholar 

  2. A. Einstein, B. Podolsky and N. Rosen, Phys.Rev., 47, 1935, p. 777.

    Article  Google Scholar 

  3. M.Brune et al., Phys.Rev.Lett., 76, 1996, pp. 1800–1803.

    Article  Google Scholar 

  4. E. Hagley et al., Phys.Rev.Lett., 79, 1997, pp. 1–4.

    Article  Google Scholar 

  5. M. Brune et al., Phys.Rev.A, 45, 1992, pp. 5193–5214.

    Article  Google Scholar 

  6. S.Haroche, in; Fundamental Problems in Quantum Theory, D.Greenberger ( Ed. ), Annals New York Academy of Sciences 1995.

    Google Scholar 

  7. M. Brune et al., Phys.Rev.Lett., 77, 1996, pp. 4887–4890.

    Article  Google Scholar 

  8. J.A. Wheeler and W.H. Zurek, Quantum Theory of measurement, Princeton, New Jersey: Princeton University Press 1983.

    Google Scholar 

  9. W. H. Zurek, Physics Today, 44, (1991), p.36; W.H. Zurek, Phys.Rev.D, 24, 1981, p.1516; 26, 1982, p.1862; A.O. Caldeira and A.J. Legget, Physica Al21, 1983, p.587; E. Joos and H.D. Zeh, Z.Phys.B, 59, 1985, p.223; R. Omnès, The interpretation of Quantum Mechanics, Princeton: Princeton University Press 1994.

    Google Scholar 

  10. R.G. Hulet and D. Kleppner, Phys.Rev.Lett, 51, 1983, pp. 1430–1433.

    Article  Google Scholar 

  11. Jan-Wei Pan et al., Phys.Rev.Lett, 80, 1998, pp. 3891–3894.

    Article  Google Scholar 

  12. S.J. Freedman and J.F. Clauser, Phys.Rev.Lett., 28, 1972, pp.938–941; J.F. Clauser, Phys.Rev.Lett., 36, 1976, pp.1223–1226; E.S. Fry and R.C. Thompson, Phys.Rev.Lett., 37, 1976, pp.465–468; A. Aspect et al., Phys.Rev.Lett., 47, 1981, pp.460–463; A. Aspect et al., Phys.Rev.Lett., 49, 1982, pp.1804–1807; Z.Y. Ou and L. Mandel, Phys.Rev.Lett., 61, 1988, pp.50–53; P.G. Kwiat et al, Phys.Rev. Lett., 75, 1995, pp. 4337–4340.

    Google Scholar 

  13. J.S. Bell, Physics, 1, 1964, p. 195.

    Google Scholar 

  14. M. Brune et al., Phys.Rev.Lett., 72, 1994, pp. 3339–3342.

    Article  Google Scholar 

  15. N. Ramsey, Molecular beams, New York: Oxford University Press 1985.

    Google Scholar 

  16. D.M. Greenberger, M.A. Horne and A. Zeilinger, Am.J.Phys., 58, 1990, p. 1131.

    Article  Google Scholar 

  17. A.Zeilinger, private communication.

    Google Scholar 

  18. R.J.Glauber, Phys.Rev., 130, 1963, p. 2529.

    Article  Google Scholar 

  19. E. Schrödinger, Naturwissenschaften,23, 1935 p.807, p.823,p.844; reprinted in english in [8].

    Google Scholar 

  20. L. Davidovich et al, Phys.Rev A, 53, 1996, pp. 1295–1309.

    Article  Google Scholar 

  21. J.M. Raimond, M. Brune and S. Haroche, Phys.Rev.Lett., 79, 1997, pp. I964–1967.

    Article  Google Scholar 

  22. W.H. Zurek, Physics World, Jan 1997, p. 25.

    Google Scholar 

  23. M.O. Scully et al., Nature (London), 351, 1991, p.111; S. Haroche et al., Appl.Phys.B, 54,1992, p.355; T. Pfau et al., Phys.Rev.Lett., 73, 1994, pp.1223–1226; M.S. Chapman et al., Phys.Rev.Lett., 75, 1995, pp. 3783–3786.

    Article  Google Scholar 

  24. L. Davidovich et al., Phys.Rev.Lett, 71, 1993, pp. 2360–2363.

    Article  Google Scholar 

  25. G.Raithel et al., in: Cavity Quantum Electrodynamics, P.Berman (Ed.), New York: Academic Press 1994, pp. 57–121.

    Google Scholar 

  26. X. Maître et al., Phys.Rev.Lett., 79, 1997, pp. 769–772.

    Article  Google Scholar 

  27. A. Barenco et al., Phys.Rev.Lett., 74, 1995, pp.4083–4086; T. Sleator and H. Weinfurter, Phys.Rev.Lett., 74, 1995, pp.4087–4090; P. Domokos et al., Phys.Rev. A, 52, 1995, p. 3554.

    Google Scholar 

  28. Q.A. Turchette et al., Phys.Rev.Lett., 75, 1995, pp. 4710–4713.

    Article  Google Scholar 

  29. C. Monroe et al., Phys.Rev.Lett., 75, 1995, pp.4714–4717; C. Monroe et al., Science, 272, 1996, p.1131; Q.A.Turchette et al., Phys.Rev.Lett., 81, 1998, pp. 3631–3634.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haroche, S. (1999). Quantum Engineering with Atoms and Photons in a Cavity. In: Greenberger, D., Reiter, W.L., Zeilinger, A. (eds) Epistemological and Experimental Perspectives on Quantum Physics. Vienna Circle Institute Yearbook [1999], vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1454-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1454-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5354-1

  • Online ISBN: 978-94-017-1454-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics