Skip to main content

Characterizing the Role of Bacteria and Bacterial Activities in the Emulsification and Degradation of Triglycerides

  • Chapter

Abstract

Bacteria capable of emulsifying and utilizing triglyceride-containing waste generated from animal fat may have a significant impact on disposal. This type of waste, while not toxic, poses a significant disposal problem due to the large amount generated and slow rate of decay. Surfactants alone, either synthetic or biological, do not emulsify triglycerides and our study indicates that lipase activity alone is also not sufficient for emulsification. This investigation attempts to clarify what characteristics or combinations of characteristics are important to triglyceride emulsification and utilization. To that end, we developed a reproducible assay to screen individual bacterial isolates, bacterial consortia and microbe- or enzyme-based commercial products for their ability to emulsify an animal fat substrate. Over 100 strains and 54 commercial products were screened, and we report the finding of two strains of P. aeruginosa, which consistently emulsify large percentages of the substrate. Strain Pa64 consistently emulsified an average of 74.8% (n = 33) of the substrate, while strain DBX-3 consistently emulsified 34.7% (n = 22). However, when the cell numbers of the initial inoculum are increased, both strains emulsify the same amount of substrate in a 7-day incubation period, indicating a possible cell density or nutrient related characteristic required for emulsification. Qualitative analysis of the surfactants by thin layer chromatography demonstrated that both strains produce the same three rhamnolipids. TLC-FID was utilized to estimate total surfactant production and lipase activity in cell cultures of these strains grown on the triglyceride substrate. Results indicate significant surfactant production and lipase activity in situ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arino, S., Marchai, S. and Vandecasteele, J.-P. (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species, Appl. Microbiol. Biotechnol. 45, 162–168.

    Article  CAS  Google Scholar 

  • Banat, I.M. (1995) Biosurfactant production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review, Biores. Tech. 51, 2–12.

    Article  Google Scholar 

  • Banerjee, S., Duttagupta, S. and Chakrabarty, A.M. (1983) Production of emulsifying agent during growth of Pseudomonas cepacia with 2,4,5-trichlorophenolyaceic acid, Arch. Microbiol. 135, 110–114.

    Article  CAS  Google Scholar 

  • Berg, G., Seech, A.G., Lee, H. and Trevors, J.T. (1990) Identification and characterization of a soil bacterium with extracellular emulsifying activity, J. Environ. Sci. Health 25, 753–764.

    Google Scholar 

  • Bouches, M., Blanchet, D. and Vandecasteele, J.P. (1995) Degradation of polycyclic aromatic hydrocarbons by pure strain and by defined strain association; Inhibition phenomena and co-metabolism, Appl. Microbiol. Biotechnol. 43, 156–164.

    Article  Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Part III: The Behavior of Biological Macromolecules, W.H. Freeman and Co., New York, pp. 1327–1371.

    Google Scholar 

  • Christie, W.W. (1982) Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids, 2nd edn., Pergamon Press, New York.

    Google Scholar 

  • Desai, J.D. and Banat, I.M. (1997) Microbial production of surfactants and their commercial potential, Microbiol. Molec. Biol. Rev. 61, 47–64.

    CAS  Google Scholar 

  • Dexiel, E., Paquette, G., Villemur, R., Lepine, F. and Bisaillon, J. (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons, Appl. Environ. Microbiol. 62, 1908–1912.

    Google Scholar 

  • Falatko, D.M. and Novak, J.T. (1992) Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons, Water Environ. Res. 64, 163–169.

    Article  CAS  Google Scholar 

  • Fiechter, A. (1992) Biosurfactants: Moving towards industrial application, Trends Biotechnol. 10, 208–217.

    Article  CAS  Google Scholar 

  • Guerra-Santos, L.H., Kappeli, O. and Fiechter, A. (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors, Appl. Microbiol. Biotechnol. 24, 443–448.

    Article  CAS  Google Scholar 

  • Hisatsuka, K., Nakahara, T., Sano, N. and Yamada, K. (1971) Formation rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation, Agr. Biol. Chem. 35, 686–692.

    Article  Google Scholar 

  • Itoh, S. and Suzuki, T. (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability, Agric. Biol. Chem. 36, 2233–2235.

    Article  CAS  Google Scholar 

  • Jackson, M.A. (1993) Lipid Analysis by TLC-FID: Seminar Notes, RSS, Inc., Bemis, TN.

    Google Scholar 

  • Jones, W.R. (1997) Biosurfactants, bioavailability and bioremediaton, in G.L. Wise (ed.), Global Environmental Biotechnology, Elsevier Science, Amsterdam, pp. 379–391.

    Google Scholar 

  • Koch, A.K., Kappeli, O., Fiechter, A. and Reiser, J. (1991) Hydrocarbon assimilation and biosurfactant production in P. aeruginosa mutants, J. Bacteriol. 173, 4212–4219.

    CAS  Google Scholar 

  • Laughlin, R.G. (1994) The Aqueous Phase Behavior of Surfactants: The Relationship of the Physical Science of Surfactants, Academic Press, San Diego, CA.

    Google Scholar 

  • Leahy, J.G. and Colwell, R.R. (1990) Microbial degradation of hydrocarbons in the environment, Microbiol. Rev. 54, 305–315.

    Google Scholar 

  • Neu, T.R. (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces, Microbiol. Rev. 60, 151–166.

    Google Scholar 

  • Oberbremer, A., Muller-Hurtig, R. and Wagner, F. (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor, Appl. Microbiol. Biotechnol. 32, 485–489.

    Article  CAS  Google Scholar 

  • Pritchard, P.H., Mueller, J.G., Rogers, J.C., Kremer, F.V. and Glasser, J.A. (1992) Oil spill bioremediation: Experiences, lessons and results from the Exxon Valdez oil spill in Alaska, Biodegradation 3, 315–335.

    Article  CAS  Google Scholar 

  • Robert, M., Mercade, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Nanres, M.A. and Guinea, J. (1989) Effect of the carbon source on biosurfactant production by P aeruginosa 44T, Biotechnol. Lett. 11, 871–874.

    Article  CAS  Google Scholar 

  • Rosenburg, E. (1986) Microbial surfactants, Crit. Rev. Biotechnol. 3, 109–132.

    Google Scholar 

  • Rouse, J.D., Sabatini, D.A., Suflita, J.M. and Harwell, J.H. (1994) Influence of surfactants on microbial degradation of organic compounds, Crit. Rev. Environ. Sci. Technol. 24, 325–370.

    Google Scholar 

  • Starr, M.P. (1941) Spirit blue agar; A medium for the detection of lipolytic microorganisms, Science 93, 333–334.

    Google Scholar 

  • Thomas, J.M., Yordy, J.R., Amador, J.A. and Alexander, M. (1986) Rates of dissolution and biodegradation of water-insoluble organic compounds, Appl. Environ. Microbiol. 52, 290–296.

    Google Scholar 

  • Zhang, Y. and Miller, R.M. (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant), Appl. Environ. Microbiol. 58, 3276–3282.

    Google Scholar 

  • Zhang, Y. and Miller, R.M. (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Appl. Environ. Microbiol. 60, 2101–2106.

    Google Scholar 

  • Zhang, Y. and Miller, R.M. (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and degradation of n-alkanes, Appl. Environ. Microbiol. 61, 2247–2251.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ewell, M., Hind, J.S., Jones-Meehan, J., Jones, W.R. (2001). Characterizing the Role of Bacteria and Bacterial Activities in the Emulsification and Degradation of Triglycerides. In: Healy, M., Wise, D.L., Moo-Young, M. (eds) Environmental Monitoring and Biodiagnostics of Hazardous Contaminants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1445-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1445-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5674-0

  • Online ISBN: 978-94-017-1445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics