Skip to main content

Genetic engineering of bacterial insecticides for improved efficacy against medically important Diptera

  • Chapter
Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

Bacterial insecticides have been in use for control of agricultural pests and vector and nuisance mosquitoes and blackflies for more than two decades. Nevertheless, these insecticides constitute less than 2% of the market world-wide due primarily to their low to moderate efficacy in comparison to chemical insecticides. Recombinant DNA techniques have made it possible to improve the efficacy of bacterial insecticides from 2 to 10-fold by markedly increasing the synthesis of insecticidal proteins, and by enabling new combinations of insecticidal proteins from different bacteria to be produced within single strains. This chapter reviews the use of promoters, 3’ and 5’ enhancer elements, and chaperone-like proteins in conjunction with shuttle expression vectors to improve the efficacy of bacterial insecticides, with an emphasis on those used in mosquito and blackfly control. The prospects for additional improvements in efficacy and extending the use of this technology to other bacterial species are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams LF, Visick JE, & Whiteley HR (1989) A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J. Bacteriol. 171: 521–530

    PubMed  CAS  Google Scholar 

  2. Adams LF, Mathewes S, O’Hara P, Petersen A & Gurtler H (1994) Elucidation of the mechanism of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var. tenebrionis. Mol. Microbiol. 13: 97–107

    Article  Google Scholar 

  3. Agaisse H & Lereclus D (1994) Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol. Microbiol. 13: 97–107

    Article  PubMed  CAS  Google Scholar 

  4. Agaisse H & Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein ? J. Bacteriol. 177: 6027–6032

    PubMed  CAS  Google Scholar 

  5. Agaisse H & Lereclus D (1996) STAB-SD: a Shine-Dalgarno sequence in the 5’ untranslated region is a determinant of mRNA stability. Mol. Microbiol. 20: 633–643

    Article  PubMed  CAS  Google Scholar 

  6. Arantes O & Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115–119

    Article  PubMed  CAS  Google Scholar 

  7. Bar E, Leiman-Hurwitz J, Rahamim E, Keynan A & Sandler N (1991) Cloning and expression of Bacillus thuringiensis israelensis 8-endotoxin DNA in B. sphaericus. J. Invertebr. Pathol. 57: 149–158

    Article  PubMed  CAS  Google Scholar 

  8. Bar E, Sandler N, Makayoto M & Keynan A (1998) Expression of chromosomally inserted Bacillus thuringiensis israelensis toxin genes in Bacillus sphaericus. J. Invertebr. Pathol. 72: 206–213

    Article  PubMed  CAS  Google Scholar 

  9. Baum JA & Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol. 18: 1–12

    Article  PubMed  CAS  Google Scholar 

  10. Baum JA, Kakefuda M & Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl. Environ. Microbiol. 62: 4367–4373

    PubMed  CAS  Google Scholar 

  11. Baumann P, Clark MA, Baumann L & Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol. Rev. 55: 425–436

    PubMed  CAS  Google Scholar 

  12. Becker N & M Ludwig (1993) Investigations on possible resistance in Aedes vexans after a 10-year application of Bacillus thuringiensis israelensis. J. Amer. Mosq. Control Assoc. 9: 221–224

    CAS  Google Scholar 

  13. Becker N & Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies, p. 147–170. In Entwistle PF, Cory JS, Bailey MJ & Higgs (ed.), Bacillus thuringiensis, An environmental biopesticide: theory and practice, John Wiley & Sons

    Google Scholar 

  14. Berry C, Hindley J, Ehrhardt AF, Grounds T, de Souza I & Davidson EW (1993) Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. J Bacteriol. 175: 510–518

    PubMed  CAS  Google Scholar 

  15. Berry C, Jackson-Yap J, Oei C & Hindley J (1989) Nucleotide sequence of two toxin genes from Bacillus sphaericus IAB59: sequence comparisons between five highly toxinogenic strains. Nucleic Acids Res. 17: 7516

    Article  PubMed  CAS  Google Scholar 

  16. Bideshi DK, Park HW, Wirth MC, Walton WE & Federici BA (2000) Markedly improved recombinant bacterial insecticide for controlling mosquito vectors of human disease. Submitted

    Google Scholar 

  17. Bourgouin C, Delécluse A, de La Torre F & Szulmajster J (1990) Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl. Environ. Microbiol. 56: 340–344

    PubMed  CAS  Google Scholar 

  18. Butko, P, Huang, FM, Pusztai-Carey M & Surewicz WK (1996) Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry 35: 11355–11360

    Article  PubMed  CAS  Google Scholar 

  19. Butko, P, Huang, FM, Pusztai-Carey M & Surewicz WK (1997) Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes. Biochemistry 36: 12862–12868

    Article  PubMed  CAS  Google Scholar 

  20. Charles J-F, Nielsen-LeRoux C & Delécluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41: 451–472.

    Article  PubMed  CAS  Google Scholar 

  21. Crickmore N & Ellar DJ (1992) Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA 8-endotoxin gene in Bacillus thuringiensis. Mol. Microbiol. 6: 1533–1537

    Article  PubMed  CAS  Google Scholar 

  22. Crickmore N, Bone EJ, Williams JA & Ellar DJ (1995) Contribution of the individual components of the 8-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 131: 249–254

    CAS  Google Scholar 

  23. Crickmore N, Zeigler DR, Feitelson J et al. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807–813

    PubMed  CAS  Google Scholar 

  24. Davidson EW (1988) Binding of the Bacillus sphaericus (Eubacteriales: Bacillaceae) toxin to midgut cells of mosquito (Diptera: Culicidae) larvae: relationship to host range. J. Med. Entomol. 25: 151–157

    PubMed  CAS  Google Scholar 

  25. Delécluse A, Rosso M-L, & Ragni A (1995) Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl. Environ. Microbiol. 61: 4230–4235

    PubMed  Google Scholar 

  26. Dervyn E, Poncet S, Klier A & Rapoport G (1995) Transcriptional regulation of the crylVD gene operon from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 177: 2283–2291

    PubMed  CAS  Google Scholar 

  27. Federici BA & Bauer LS (1998) CytlAa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3A. Appl. Environ. Microbiol. 64: 4368–4371

    PubMed  CAS  Google Scholar 

  28. Ge B (1999) Molecular characterization of mosquitocidal protein synthesis and crystallization in Bacillus thuringiensis. Ph.D. Thesis, University of California, Riverside

    Google Scholar 

  29. Ge B, Bideshi DK, Moar WJ & Federici BA. (1998) Differential effects of helper proteins encoded by the cry2A and cryl 1A operons on the formation of Cry2A crystals in Bacillus thuringiensis. FEMS Microbiol. Lett. 165: 35–41

    CAS  Google Scholar 

  30. Georghiou GP & Wirth MC (1977) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63: 1095–1101

    Google Scholar 

  31. Goldberg U & Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti, and Culex pipiens. Mosq. News 37: 355–358

    Google Scholar 

  32. Glatron MF & Rapoport G (1972) Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54: 1291–1301

    Article  PubMed  CAS  Google Scholar 

  33. Guillet P, Kurtak DC, Philippon B & Meyer R (1990) Use of Bacillus thuringiensis israelensis for onchocerciasis control in West Africa, p. 187–201. In de Barjac H & Sutherland DJ (ed.), Bacterial control of mosquitoes and black flies, Rutgers University Press

    Google Scholar 

  34. Höfte H & Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255

    PubMed  Google Scholar 

  35. Hue KK, Cohen SD & Bechhofer DH (1995) A polypurine sequence that acts as a 5’ mRNA stabilizer in Bacillus subtilis. J. Bacteriol. 177: 3465–3471

    PubMed  CAS  Google Scholar 

  36. Humphreys MJ & Berry C (1998) Variants of the Bacillus sphaericus binary toxins: implications for differential toxicity of strains. J. Invertebr. Pathol. 71: 184–185

    Article  PubMed  CAS  Google Scholar 

  37. Ibarra, JE & Federici BA (1986) Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 165: 527–533

    PubMed  CAS  Google Scholar 

  38. Ibarra JE & Federici BA (1986) Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiol. Lett. 34: 79–84

    CAS  Google Scholar 

  39. Knowles BH & Dow JAT (1993) The crystal S-endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. BioEssays 15: 469–476

    Article  CAS  Google Scholar 

  40. Lereclus D, Arantes O, Chaufaux J & Lecadet MM (1989) Transformation and expression of a cloned S-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211–218

    CAS  Google Scholar 

  41. Lereclus D, Agaisse H, Gominet M & Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOA mutant. Bio/Technology 13: 67–71

    Article  PubMed  CAS  Google Scholar 

  42. Malvar T & Baum JA (1994) Tn5401 disruption of the spoOF gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J. Bacteriol. 176: 4750–4753

    PubMed  CAS  Google Scholar 

  43. Moar WJ, Trumble JT & Federici BA (1989) Comparative toxicity of spores and crystals from the NDR-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 82: 1593–1603

    CAS  Google Scholar 

  44. Mulla MS (1990) Activity, field efficacy, and use of Bacillus thuringiensis israelensis against mosquitoes, p. 134–160. In de Barjac H & Sutherland DJ (ed.), Bacterial control of mosquitoes and black flies, Rutgers University Press

    Google Scholar 

  45. Park HW, Ge B, Bauer LS & Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl. Environ. Microbiol. 64: 3932–3938

    PubMed  CAS  Google Scholar 

  46. Park HW, Bideshi DK, Johnson JJ & Federici BA (1999) Differential enhancement of Cry2A versus Cry 1 1 A yields in Bacillus thuringiensis by use of the Cry3A STAB mRNA sequence. FEMS Microbiol. Lett. 181: 319–327

    CAS  Google Scholar 

  47. Poncet S, Delécluse A, Anello D, Klier A & Rapoport G (1994) Transfer and expression of the CryIVB and CryIVD genes of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus 2297. FEMS Microbiol. Lett. 117: 91–96

    CAS  Google Scholar 

  48. Poncet SA, Delécluse A, Klier A & Rapoport G (1995) Evaluation of synergistic interactions among CryIVA, CryIVB, and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 66: 131–135

    Article  CAS  Google Scholar 

  49. Poncet S, Bernard C, Dervyn E, Cayley J, Klier A & Rapoport G (1997) Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry 11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63: 4413–4420

    PubMed  CAS  Google Scholar 

  50. Rang C, Bes M, Lullien-Pellerin V, Wu D, Federici BA & Frutos R (1996) Influence of the 20-kDa protein from Bacillus thuringiensis ssp. israelensis on the rate of production of truncated Cry1C proteins. FEMS Microbiol. Lett. 141: 261–264

    CAS  Google Scholar 

  51. Rao DR, Mani TR, Rajendran R, Joseph ASJ, Gajanana A & Reuben R (1995) Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J. Am. Mosq. Control Assoc. 11: 1–5

    CAS  Google Scholar 

  52. Rodcharoen J & Mulla MS (1994) Resistance development in Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus. J. Econ. Entomol. 87: 1133–1140

    Google Scholar 

  53. Schnepf E, Crickmore N, Van Rie J et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775–806

    Google Scholar 

  54. Seleena P, Lee HL & Lecadet M-M (1995) A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure: Bacillus thuringiensis serovar jegathesan. J. Am. Mosq. Control Assoc. 11: 471–473

    PubMed  CAS  Google Scholar 

  55. Servant P, Rosso M-L, Hamon S, Poncet S, Delécluse A & Rapoport G (1999) Production of CryllA and Cry 11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Appl. Environ. Microbiol. 65: 3021–3026

    PubMed  CAS  Google Scholar 

  56. Silva-Filha MH, Regis L, Nielsen-LeRoux C & Charles JF (1995) Low-level resistance to Bacillus sphaericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 88: 525–530

    Google Scholar 

  57. Sinègre G, Babinot M, Quermal JM & Gaven B (1994) First field occurrence of Culex pipiens resistance to Bacillus sphaericus in southern France. V II European Meeting, Society for Vector Ecology, Barcelona, Spain

    Google Scholar 

  58. Sullivan MA, Yasbin RE & Young FE (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29: 21–26.

    Article  PubMed  CAS  Google Scholar 

  59. Thiéry I, Hamon S, Delécluse A & Orduz S (1998) The introduction into Bacillus sphaericus of the Bacillus thuringiensis subsp. medellin cytlAb1 gene results in higher susceptibility of resistant mosquito larva populations to B. sphaericus. Appl. Environ. Microbiol. 64: 3910–3916

    PubMed  Google Scholar 

  60. Thomas WE & Ellar DJ (1983) Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal S-endotoxin. FEBS Lett. 154: 362–368

    Article  PubMed  CAS  Google Scholar 

  61. Trisrisook M, Pantuwatana S, Bhumiratana A & Panbangred W (1990) Molecular cloning of the 130-kilodalton mosquitocidal S-endotoxin gene of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus. Appl. Environ. Microbiol 56: 1710–1716

    PubMed  CAS  Google Scholar 

  62. Visick JE & Whiteley HR (1991) Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. isralensis on production of the CytA protein by Escherichia coli. J. Bacteriol. 173: 1748–1756

    PubMed  CAS  Google Scholar 

  63. Widner WR & Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171: 965–974

    PubMed  CAS  Google Scholar 

  64. Wirth MC, Walton WE & Federici BA (2000) CytlA from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. In press

    Google Scholar 

  65. Wirth MC, Delécluse A, Federici BA & Walton WE (1998) Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 64: 4174–4179.

    PubMed  CAS  Google Scholar 

  66. Wirth MC, Georghiou GP & Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536–10540.

    Article  PubMed  CAS  Google Scholar 

  67. Wirth MC, Walton WE & Federici BA (2000) CytlA from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti. Appl. Environ. Microbiol. In press

    Google Scholar 

  68. Wong HC & Chang S (1986) Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc. Natl. Acad. Sci. USA 83: 3222–3237

    Google Scholar 

  69. Wu D & Chang FN (1985) Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Lett. 190: 232236

    Google Scholar 

  70. Wu D & Federici BA (1993) A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J. Bacteriol. 175: 5276–5280

    PubMed  CAS  Google Scholar 

  71. Wu D, Johnson JJ & Federici BA (1994) Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 13: 965–972

    Article  PubMed  CAS  Google Scholar 

  72. Wu D & Federici BA (1995) Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using crylA(c) promoters to express the gene for an associated 20-kDa protein. Appl. Microbiol. Biotechnol. 42: 697–702

    Article  PubMed  CAS  Google Scholar 

  73. Yoshisue HK, Yoshida K, Sen H et al. (1992) Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coll. Biosci. Biotechnol. Biochem. 56: 1429–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Federici, B.A., Park, HW., Bideshi, D.K., Ge, B. (2000). Genetic engineering of bacterial insecticides for improved efficacy against medically important Diptera. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics