Skip to main content

Biotechnological improvement of Bacillus thuringiensis for agricultural control of insect pests: benefits and ecological implications

  • Chapter
Book cover Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

Bacillus thuringiensis (Bt) strains and toxins are highly diverse. Our understanding of their regulation and the development of efficient host-vector systems has made possible to overcome a number of the problems associated with Bt-based insect control measures. Recombinant DNA technology has been used to develop new Bt strains for more effective pest control in various crops. Bt insecticidal toxin genes have also been introduced into bacteria that colonise plants and inserted directly into plants to make them resistant to specific insect pests. This article presents an overview of the principal approaches used to improve Bt and describes the achievements of biotechnology and the prospects for future improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adang MJ, Brody MS, Cardineau G et al. (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol. Biol. 21, 1131–1145

    CAS  Google Scholar 

  2. Addison JA (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil: a review. Can. J. Forest. Res. 23, 2329–2342

    Article  Google Scholar 

  3. Agaisse H & Lereclus D (1994) Expression in Bacillus subtilis of the Bacillus thuringiensis crylllA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant. J. Bact. 176, 4734–4741

    CAS  PubMed  Google Scholar 

  4. Agaisse H & Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein ? J. Bact. 177, 6027–6032

    CAS  PubMed  Google Scholar 

  5. Arantes O & Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115–119

    Article  CAS  PubMed  Google Scholar 

  6. Baum JA & Gilbert MP (1991) Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J. Bact. 173, 5280–5289

    CAS  PubMed  Google Scholar 

  7. Baum JA, Kakefuda M & Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl. Environ. Microbiol. 62, 4367–4373

    CAS  PubMed  Google Scholar 

  8. Bone EJ & Ellar DJ (1989) Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 58, 171–178

    CAS  Google Scholar 

  9. Bravo A, Agaisse H, Salamitou S et al. (1996) Analysis of crylAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 250, 734–741

    CAS  PubMed  Google Scholar 

  10. Chilton S. (1997) Genetic engineering of plant secondary metabolites for insect protection, p. 237–269. In Carozzi N & Koziel M (ed.), Advances in insect control: the role of transgenic plants, Taylors & Francis Ltd.

    Google Scholar 

  11. Czapla TH (1997) Plant lectins as insect control proteins in transgenic plants, p. 123–138. In Carozzi, N. & Koziel, M. (ed.), Advances in insect control: the role of transgenic plants, Taylors & Francis Ltd.

    Google Scholar 

  12. Down RE, Gatehouse AMR, Hamilton WDO et al. (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administred in vitro and via transgenic plants in laboratory and glasshouse trials. J. Insect Physiol. 42, 1035–1045

    Article  CAS  Google Scholar 

  13. Estruch JJ, Warren GW, Mullins MA et al. (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93, 5389–5394

    Article  CAS  PubMed  Google Scholar 

  14. Estruch JJ, Carozzi NB, Desai N et al. (1997) Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15, 137–141

    Article  CAS  PubMed  Google Scholar 

  15. Fischhoff DA, Browdish KS, Perlak FJ et al. (1987) Insect-tolerant transgenic tomato plants. Bio/Technology 5, 807–813

    Article  CAS  Google Scholar 

  16. Fujimoto H, Itoh K, Yamamoto M et al. (1993) Insect-resistant rice generated by introduction of a modified S—endotoxin gene of Bacillus thuringiensis. Bio/Technology 11, 1151–1155

    Article  CAS  PubMed  Google Scholar 

  17. Fuxa JR (1989) Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms. Bulletin of the ESA, 12–24

    Google Scholar 

  18. Gonzalez JMJ, Brown BJ & Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79, 6951–6955

    Article  CAS  PubMed  Google Scholar 

  19. Gould F, Martinez-Ramirez A, Anderson, A et al. (1989) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens Proc. Natl. Acad. Sci. USA 89, 7986–7990

    Article  Google Scholar 

  20. Gould F (1994) Potential problems with high-dose strategies for pesticidal engineered crops. Biocontrol Sci. Technol. 4, 451–461

    Google Scholar 

  21. Grecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biol. Biochem. 30, 463–470

    Google Scholar 

  22. Hallahan DL, Pickett JA, Wadhams LJ et al. (1992) Potential secondary metabolites in genetic engineering of crops for resistance, p. 215–248. In Gatehouse AMR, Hilder VA & Boulter D (ed.), Plant genetic manipulation for crop protection, CAB International

    Google Scholar 

  23. Hernandez E, Ramisse F, Ducoureau JP et al. (1998) Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 36, 2138–2139

    Google Scholar 

  24. Hilder VA, Gatehouse AMR, Sheerman SE et al. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 333, 160–163

    Article  Google Scholar 

  25. Kalman S, Kiehne KL, Cooper N et al. (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl. Environ. Microbiol. 61, 3063–3068

    CAS  PubMed  Google Scholar 

  26. Koziel MG, Beland GL, Bowman C et al. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200

    Article  CAS  Google Scholar 

  27. Lampel JS, Canter GL, Dimock MB et al. (1994) Integrative cloning, expression, and stability of the crylA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl. Environ. Microbiol. 60, 501–508

    CAS  PubMed  Google Scholar 

  28. Lereclus D, Agaisse H, Gominet M et al. (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOA mutant. Bio/Technology 13, 67–71

    Article  CAS  PubMed  Google Scholar 

  29. Lereclus D, Arantes O, Chaufaux J et al. (1989) Transformation and expression of a cloned 8—endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60, 211–218

    CAS  Google Scholar 

  30. Lereclus D, Vallade M, Chaufaux J et al. (1992) Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology 10, 418–421

    Article  CAS  PubMed  Google Scholar 

  31. Lorenz MG & Wackernagel W (1996) Mechanism and consequences of horizontal gene transfer in natural bacterial populations, p. 45–57. In Tomiuk J, Wöhrmann K & Sentker A (ed.), Transgenic organisms: biological and social implications, Birkhauser Verlag

    Google Scholar 

  32. Macaluso A & Mettus AM (1991) Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J. Bact. 173, 1353–1356

    CAS  PubMed  Google Scholar 

  33. Mahillon J & Lereclus D (1988) Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J. 7, 1515–1526

    CAS  PubMed  Google Scholar 

  34. McBride KE, Svab Z, Schaaf DJ et al. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13, 362–365

    Article  CAS  PubMed  Google Scholar 

  35. Mohan KS, Asokan R & Gopalakrishnan C (1997) Development and field performance of a sporeless mutant of Bacillus thuringiensis subsp. kurstaki. J. Plant Biochem. Biotechnol. 6, 105–109

    Article  Google Scholar 

  36. Nascimiento ML, Capalbo DF, Moraes GJ et al. (1998) Effect of a formulation of Bacillus thuringiensis Berliner var. kurstaki on Podisus nigrispinus Dallas (Heteroptera: Pentatomidae: Asopinae). J. Invertebr. Pathol. 72, 178–180

    Article  Google Scholar 

  37. Obukowicz MG, Perlak FJ, Kuzano-Kretzmer K et al. (1986) Integration of the delta endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5 Gene 45, 327–331

    CAS  Google Scholar 

  38. Palm CJ, Schaller DL, Donegan KK et al. (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var. Kurstaki 8—endotoxin. Can. J. Microbiol. 45, 1258–1262

    Article  Google Scholar 

  39. Perlak FJ, Deaton RW, Armstrong TA et al. (1990) Insect resistant cotton plants. Bio/Technology 8, 939–943

    Article  CAS  PubMed  Google Scholar 

  40. Perlak FJ, Fuchs RL, Dean DA et al. (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328

    Article  CAS  PubMed  Google Scholar 

  41. Pimentel D (1991) CRC Handbook of Pest Management in Agriculture. Vol. 1, 2nd edn, CRC Press

    Google Scholar 

  42. Purcell JP, Greenplate JT, Jennings MG et al. (1996) Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun. 196, 1406–1413

    Article  Google Scholar 

  43. Pusztai M, Fast M, Gringorten L et al. (1991) The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem. J. 273, 43–47

    CAS  PubMed  Google Scholar 

  44. Roush RT (1989) Designing Resistance Management Programs: How can you choose? Pesticide Science 26, 423–441

    Article  CAS  Google Scholar 

  45. Samples JR & Buettner H (1983). Corneal ulcer caused by a biological insecticide (Bacillus thuringiensis). Am. J. Ophthalmol. 95, 258–260

    Article  CAS  PubMed  Google Scholar 

  46. Sanchis V, Agaisse H, Chaufaux J et al. (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector. J. Biotechnol. 48, 81–96

    Article  CAS  PubMed  Google Scholar 

  47. Sanchis V, Agaisse H, Chaufaux J et al. (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl. Environ. Microbiol. 63, 779–784

    CAS  PubMed  Google Scholar 

  48. Shade RE, Schroeder HE, Pueyo JJ et al. (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12, 793–796

    Article  CAS  Google Scholar 

  49. Skot L, Harrison SP, Nath A et al. (1990) Expression of insecticidal activity in Rhizobium containing the S—endotoxin gene cloned from Bacillus thuringiensis subsp. tenebrionis. Plant & Soil 127, 285–295

    Article  CAS  Google Scholar 

  50. Stock CA, McLoughlin TJ, Klein JA et al. (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepecia. Can. J. Microbiol. 36, 879–884

    Article  CAS  Google Scholar 

  51. Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39, 47–79

    Article  Google Scholar 

  52. Thuriaux P (1996) Les flux de gènes, p. 99–110. In Kahn A (ed.), Les plantes transgéniques en agriculture, John Libbey Eurotext.

    Google Scholar 

  53. Udayasuriyan V, Nakamura A, Masaki H et al. (1995) Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonizing Azospirillum. World J. Microbiol. Biotechnol. 11, 163–167

    Article  CAS  Google Scholar 

  54. Vaeck M, Reynaerts A, Höfte H et al. (1987) Transgenic plants protected from insect attack. Nature 327, 33–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanchis, V. (2000). Biotechnological improvement of Bacillus thuringiensis for agricultural control of insect pests: benefits and ecological implications. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics