Skip to main content

Management of resistance to bacterial vector control

  • Chapter

Abstract

The vast majority of entomopathogenic bacteria used in vector control belongs to the species Bacillus thuringiensis israelensis (Bti) to which no field resistance has been reported. Thus consideration of the management of resistance to bacterial larvicides essentially concerns B. sphaericus. Resistance to this bacterium has been recorded in mosquito populations both in the laboratory and under field conditions, after periods of continuous exposure to B. sphaericus strains 2362, 1593 or C3-41. B. sphaericus has several advantages over other agent for controlling mosquitoes such as Culex and Anopheles species. It may be applied rationally as a part of an integrated control program. Case histories, the reasons for the development of B. sphaericus resistance and application strategies for the continued success of this environmentally safe larvicide are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Rauf M and Ellar DJ (1999) Toxicity and receptor Binding Properties of Bacilllus thuringiensis Cry1CToxin active agaisnt both Lepidoptera and Diptera. J. Invertbr. Pathol 73, 52–58

    Article  CAS  Google Scholar 

  2. Barbazan P, Baldet T, Darriet F et al. (1997) Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 13, 263–269

    PubMed  CAS  Google Scholar 

  3. Becker N and Ludwig M (1993) Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J. Am. Mosq.Control Assoc. 9, 221–224

    PubMed  CAS  Google Scholar 

  4. Berry C, Jackson-Yap J, Oei C and Hindley J (1989) Nucleotide sequence of 2 toxin genes from Bacillus sphaericus Iab59 - Sequence comparisons between 5 highly toxinogenic strains. Nucleic Acids Res. 17, 7516

    Article  PubMed  CAS  Google Scholar 

  5. Bravo A, Koen H, Jansens S and Peferoen M (1992) Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J. Invertebr. Pathol. 60, 247–253

    Article  CAS  Google Scholar 

  6. Charles J-F (1987) Ultrastructural midgut events in Culicidae larvae fed with Bacillus sphaericus 2297 spore/crystal complex. Ann. Inst. Pasteur/Microbiol. 138, 471–484

    Article  CAS  Google Scholar 

  7. Charles J-F, Silva-Filha M-H, Nielsen-LeRoux C, Humphreys M-J and Berry C (1997) Binding of 51-and 42 kDa individual components from Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae). FEMS Microbiol. lett. 156, 153–159

    Article  PubMed  CAS  Google Scholar 

  8. Denholm I and Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Ann. Rev. Entomol. 37, 91–112

    Article  CAS  Google Scholar 

  9. Feldman A, Dullemans A and Waalwijk C (1995) Binding of the CryIVD toxin of Bacillus thuringiensis subsp. israelensis to larval dipteran midgut proteins. Appl. Environm. Microbiol. 61, 2601–2605

    Google Scholar 

  10. Ferré J, Real MD, Van Rie J, Jansens S and Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119–5123

    Article  PubMed  Google Scholar 

  11. Georghiou G, Wirth M, Ferrari J and Tran H (1991) Baseline susceptibility and analysis of variability toward biopesticide in Califonia populations of Culex quinquefasciatus. Annual Report, University of Califonia Riverside 25–27

    Google Scholar 

  12. Georghiou GP (1994) Principles of insecticide resistance management. Phytoprotection, 75, 51–59

    Article  Google Scholar 

  13. Gould F, Anderson A, Jones A et al. (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natcl. Acad. Sci. USA 94, 3519–3523

    Article  CAS  Google Scholar 

  14. Hofmann C, Lüthy P, Hütter R and Pliska V (1988) Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173, 85–91

    Article  PubMed  CAS  Google Scholar 

  15. Hougard J-M and Back C (1992) Perspectives on the bacterial control of vectors in the tropics. Parasitology Today 8, 364–366

    Article  PubMed  CAS  Google Scholar 

  16. Hougard JM, Mbentengam R, Lochouarn L et al. (1993) Control of Culex quinquefasciatus by Bacillus sphaericus: results of a pilot campaign in a large urban area in equatorial africa. Bull WHO 71, 367–375

    PubMed  CAS  Google Scholar 

  17. Humphreys MJ and Berry C (1998) Variants of the Bacillus sphaericus binary toxin: implications for differential toxicity strains. J. Invertbr. Pathol. 71, 184–85

    Article  CAS  Google Scholar 

  18. Ishii T (1985) Field trials of Altozid 10F against mosquitoes in Japan, p. 143–163. In Laird M and Miles (ed.), J Integrated Mosquito Control Methodologies, Vol 2. London Academic Press Inc. Ltd

    Google Scholar 

  19. Karch S, Asidi N, Manzambi M and Salaun JJ (1992) Efficacy of Bacillus sphaericus against the malaria vector Anopheles gambiae and other mosquitoes in swamps and rice fields in Zaire. J. Am. Mosq. Control Assoc. 8, 376–380

    PubMed  CAS  Google Scholar 

  20. Kumar A, Sharma VP, Thavaselvam D et al. (1996) Control of Culex quinquefasciatus with Bacillus sphaericus in Vasoco City, Goa. J. Am. Mosq. Control. Assoc. 12, 409–413

    CAS  Google Scholar 

  21. Laird M and Miles J (1985) In Integrated Mosquito Control Methodologies, Academic Press Inc. Ltd, London

    Google Scholar 

  22. Lenormand T and Raymond M (1998) Resistance management: the stable zone strategy. Proc. R. Soc. Lond. B 265, 1985–1990

    Article  Google Scholar 

  23. Majora Brazao e Silva C (1997) Avaliaçao dos efeitos interrativos decorrentes do use combinado de biomassas das epécies entomotogênicas: Bacillus thuringiensis serovar israelensis IPS82 e Bacillus sphaericus 2362. Fundaçao Oswaldo Cruz

    Google Scholar 

  24. Mardini L (1998) Programa Estadual de controle biologico Simulium sp (Diptera: Simulidae) No Rio Grando do Sul, Brasil. Proc. VI SICONBIOL, Rio de Janeiro, Brasil 41–43

    Google Scholar 

  25. Nicolas L, Dossou-Yovo J and Hougard J-M (1987) Persistence and recycling of Bacillus sphaericus 2362 spores in Culex quinquefasciatus breeding sites in West Africa. Appl. Microbiol. Biotechnol. 25, 341–345

    Article  Google Scholar 

  26. Nielsen-LeRoux C and Charles J-F (1992) Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membranes from mosquito larvae. Eur. J. Biochem. 210, 585–590

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen-LeRoux C, Charles J-F, Thiéry I and Georghiou GP (1995) Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur. J. Biochem. 228, 206–210

    Article  PubMed  CAS  Google Scholar 

  28. Nielsen-LeRoux C, Pasquier F, Charles J-F et al. (1997) Resistance to Bacillus sphericus involves different mechanisms in Cuelx pipiens (Diptera: Culicidae) larvae. J. Med. Entomol. 34, 321–327

    PubMed  CAS  Google Scholar 

  29. Oppert B, Kramer KJ, Johnson DE, Macintosh SC and McGaughey WH (1994) Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis strain of Plodia interpunctella. Biochem. Biophys. Res. Comm. 198, 940–947

    Article  PubMed  CAS  Google Scholar 

  30. Poncet S, Bernard C, Dervyn E et al. (1997) Improvement of Bacillus sphaericus toxicity against Diperan larvae by integration, via homologous recombination, of the Cry 11A toxin gene from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63, 4413–4420

    PubMed  CAS  Google Scholar 

  31. Priest FG, Ebdrup L, Zahner V and Carter P (1997) Distribustion and characterization of mosquitocidal toxin genes in some strains of Bacillus sphaericus. Appl. Environ. Microbiol. 63, 1195–1198

    PubMed  CAS  Google Scholar 

  32. Rao DR (1996) Management of resistance of Culex quinquefasciatus to Bacillus sphaericus. Annual Report: Centre for Research in Medical Entomology, ICMR, Madurai, India 18

    Google Scholar 

  33. Rao DR, Mani TR, Rajendran R, Joseph AS and Gajanana A (1995) Development of high level resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J. Amer. Mosq. Control. Assoc. 11, 1–5

    CAS  Google Scholar 

  34. Ravoahangimalala O, Charles J-F and Schoeller-Raccaud J (1993) Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae). Res. Microbiol. 144, 271–278

    Article  PubMed  CAS  Google Scholar 

  35. Regis L, Furtado AF, Oliveira C and et al. (1996) Integrated Control of the Filariasis Vector with Community participation, in an Urban Area of Recife. Cadernos Sande Pnblica 12, 473–482

    Article  Google Scholar 

  36. Regis L, Silva-Filha MHNL, de Oliveira CMF et al. (1995) Integrated control measures against Culex quinquefasciatus, the vector of filariasis in Recife. Mem. Inst. Oswaldo Cruz 90, 115–119

    Article  PubMed  CAS  Google Scholar 

  37. Rodcharoen J and Mulla MS (1994) Resistance development in Culex quinquefasciatus (Diptera: Culicidae) to the microbial agent Bacillus sphaericus. J. Econ. Entomol. 87, 1133–1140

    Google Scholar 

  38. Rodcharoen J and Mulla MS (1996) Cross-resisatnce to Bacillus sphaericus strains in Culex quinquefasciatus. J. Am. Mos. Control. Assoc. 12, 247–250

    CAS  Google Scholar 

  39. Roush RT (1993) Occurence, genetics and management of insecticide resistance. Parasitology Today 9, 174–179

    Article  PubMed  CAS  Google Scholar 

  40. Schofield C (1991) Vector population responses to control intervention. Ann. Soc. Belg. Méd. Trop 71, 201–217

    PubMed  Google Scholar 

  41. Servant P, Rosso M-L, Hamon S et al. (1999) Production of Cry 11A and Cryl1Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Appl. Environ. Microbiol. 65, 3021–3026

    PubMed  CAS  Google Scholar 

  42. Silva-Filha M-H, Nielsen-LeRoux C and Charles J-F (1997) Binding kenetics of Bacillus sphaericus binary toxin to midgut brush border membranes of Anopheles and Culex spp. mosquito larvae. Eur. J. Biochem. 247, 754–761

    Article  PubMed  CAS  Google Scholar 

  43. Silva-Filha M-H, Regis L, Nielsen-leRoux C and Charles J-F (1995) Low level resistance to Bacillus sphericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 88, 525–30

    Google Scholar 

  44. Silva-Filha MH and Regis L (1997) Reversal of low-level resistance to Bacillus sphaericus in a field populatioin of the Southern House Mosquito (Diptera: Culicidae) from Urban Area of Recife, Brazil. J. Econ. Entomol. 90, 299–303

    CAS  Google Scholar 

  45. Sinègre G, Babinot M, Quermel JM and Gaven B (1994) First field occurence of Culex pipiens resistnce to Bacillus sphaericus in southern France. In VIII European Meeting of Society for Vector Ecology, 5–8 September 1994, Faculty of Biologia, University of Barcelona, Spain

    Google Scholar 

  46. Sinègre G, Babinot M, Vigo G and Jullien J-L (1993) Bacillus sphaericus et démoustication urbaine. Bilan de cinq années d’utilisation expérimentale de la spécialité Spherimos® dans le sud de la France. Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen. Document E.I.D.L.M. N°62, 21 pp

    Google Scholar 

  47. Skovmand O and Bauduin S (1997) Efficacy of granular formulation of Bacillus sphaericus agaisnt Culex quiqnquefasciatus and Anopheles gambiae in West African countries. J. Vector Ecol. 22, 43–51

    PubMed  CAS  Google Scholar 

  48. Sundararaj R and Reuben R (1991) Evaluation of a microgel droplet formulation of Bacillus sphaericus 1593 M (Biocide-S) for control of mosquito larvae in rice fields in Southern India. J. Am. Mosq. Control Assoc. 7, 556–559

    PubMed  CAS  Google Scholar 

  49. Tang JD, Gilboa S, Roush RT and Shelton A (1997) Inheritance, stability, and lack-offitness cost of field-selected resistance to Bacillus thuringiensis in diamondback Moth (Lepidoptera: Plutellidae) from Florida. J. Econ. Entomol. 90, 732–741

    Google Scholar 

  50. Thanabalu T, Hindley J, Brenner S, Oei C and Berry C (1992) Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicule for biological control of aquatic insect larvae. Appl. Environ. Microbiol. 58, 905–910

    PubMed  CAS  Google Scholar 

  51. Thiéry I, Fouque F, Gaven B and Lagnau C (1999) Residual activity of Bacillus thuringiensis serovar medelin and jegathesan on Culex pipiens and Aedes aegypti larvae. J. Am. Mosq.Control Assoc. 15, 371–379

    PubMed  Google Scholar 

  52. Thiéry I, Hamo S, Delécluse A and Orduz S (1998) The introduction into Bacillus sphaericus of Bacillus thuringiensis subsp. medelin cytlAbl gene results in higher susceptibility of resistant mosquito larva populations to B. sphaericus. Appl. Environ. Microbiol. 64, 3910–3916

    PubMed  Google Scholar 

  53. Thiéry I, Hamon S, Cosmao Dumanoir V and de Barjac H (1992) Vertebrate safety of Clostridium bifermentans serovar malaysia, a new larvicidal agent for vector control. J. Econ. Entomol. 85, 1618–1623

    PubMed  Google Scholar 

  54. Van Rie J, Jansen S, Höfte H, Degheele D and Van Mellaert TH (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 56, 1378–1385

    PubMed  Google Scholar 

  55. Van Rie J, Mc Gaughey W, Johnson D, Barnette D and Van Mellaert TH (1989) Mechanism of resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72–74

    Google Scholar 

  56. Wirth M and Georghiou G (1997) Cross resistance among CryIV toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 90, 1471–1477

    CAS  Google Scholar 

  57. Wirth M, Georghiou GP and Federici B (1997) CytA enables crylV endotoxins of Bacillus thuringiensis to overcome high levels of CryVI resistance in the mosquito in Culex quinquefasciatus. Proc.Natl.Acad.Sci. USA 94, 10536–10540

    Article  CAS  Google Scholar 

  58. Yadav R, Sharma V and Upadhyay A (1997) Field trial of Bacillus sphaericus strain B-101 (serotype H5a,5b) against Filariasis and Japanese encephalitis vectors in India. J. Am. Mosq. Control Assoc. 13, 158–163

    PubMed  CAS  Google Scholar 

  59. Yuan Z, Cai Q, Zhang Y and Liu E (1998) High-level resistance to Bacillus sphaericus C3–41 in field collected Culex quinquefasciatus. Abstract of the VIIth Intern. Coll. Invert. Pathol. Microb. Control, Saporo, Japan, August 1998, 40

    Google Scholar 

  60. Yuan Z, Nielsen-LeRoux C, Pasteur N, Charles JF and Frutos R (1998) Detection of the binary toxin genes of several Bacillus sphaericus strains and their toxicities against susceptible and resistant Culex pipiens. Acta Entomol. Sinica 41, 337–342

    CAS  Google Scholar 

  61. Yuan Z, Zhang Y, Cai Q and Liu Ey (2000) High-level field resistance to Bacillus sphaericus C3–41 in Culex quinquefasciatus from southern China. Biocontrol. Sci. and Technol. 10 (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Regis, L., Nielsen-LeRoux, C. (2000). Management of resistance to bacterial vector control. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics