Skip to main content

Natural occurrence and dispersal of Bacillus thuringiensis in the environment

  • Chapter
Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

“Although Bacillus thuringiensis is widely used to control insect pests, the environmental fate of B. thuringiensis is known only in relatively general terms. Until recently, environmental studies looking at the natural distribution and life cycle of this bacterium were conducted only infrequently” [34]. Accordingly, very little is known about the natural transmission and behaviour of B. thuringiensis, even though the bacterium has been isolated from a variety of habitats, ranging from soil, phylloplane, and insects to consumables through-out the world. This chapter gives a review of the occurrence and fate of B. thuringiensis in different environments, along with a discussion of the epizootiology of B. thuringiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Hameed A and Landén R (1994) Studies on B. thuringiensis strains isolated from Swedish soils–Insect toxicity and production of B. cereus diarrhoeal-type enterotoxin. World J. Microbiol and Biotech. 10, 406–409

    Article  Google Scholar 

  2. Aizawa K, Takasu T and Kurata K (1961) Isolation of B. thuringiensis from the dust of silkworm rearing houses of farmers. J. Sericult. Sci. Jap. 30, 451–455

    Google Scholar 

  3. Aly C (1985) Germination of B. thuringiensis var. israelensis spores in the gut of Aedes larvae (Diptera: Culicidae). J. Invert. Path. 45, 1–8

    Article  CAS  Google Scholar 

  4. Aly C, Mulla MS and Federici BA (1985) Sporulation and toxin production by B. thuringiensis var. israelensis in cadavers of mosquito larvae (Diptera: Culicidae). J. Invert. Path. 46, 251–258

    Article  CAS  Google Scholar 

  5. Anonymous (1993) Bacillus cereus. Determination in foods. Nordic committee on food analysis 67, pp.4

    Google Scholar 

  6. Asimeng EJ and Mutinga MJ (1992) Isolation of mosquito-toxic bacteria from mosquito-breeding sites in Kenya. J. Am. Mosq. Control Assoc. 8, 86–88

    PubMed  CAS  Google Scholar 

  7. Attwood AI and Evans DM (1983) Bacillus cereus infections in burns. Burns 9, 355–357

    Google Scholar 

  8. Barrie D, Hoffman PN, Wilson JA et al (1994) Contamination of hospital linen by Bacillus cereus. Epidemiol. and Infections 113, 297–306

    Article  CAS  Google Scholar 

  9. Barrie D, Wilson JA, Hoffman PN et al (1992) Bacillus cereus meningitis in two neurosurgical patients–an investigation into the source of the organism. J. Infection 25, 291–297

    Google Scholar 

  10. Barry JW, Skyler PI, Teske ME, et al (1993) Predicting and measuring drift of B. thuringiensis sprays. Environ. Tox. and Chem. 12, 1977–1989

    Google Scholar 

  11. Batko A and Weiser J (1965) On the taxonomic position of the fungus discovered by Strong, Wells, and Apple: Strongwellsea castrans gen.et sp. nov. (Phycomycetes: Entomophthoraceae). J. Invert. Path. 7, 455–463

    Article  Google Scholar 

  12. Beegle CC, Dulmage HT, Wolfenbarger DA et al (1981) Persistence of B. thuringiensis Berliner insecticidal activity on cotton foliage. Environ. Entom. 10, 400–401

    Google Scholar 

  13. Berliner E (1915) Über die Schalffsucht der Mehlmottentaupe and ihren Erreger B. thuringiensis n.sp. Zeit. Angew. Entom. 2, 29–56

    Article  Google Scholar 

  14. Brownbridge M and Margalit J (1986) New B. thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invert. Path. 48, 216–222

    Article  CAS  Google Scholar 

  15. Brownbridge M and Onyango T (1992) Screening of exotic and locally isolated B. thuringiensis (Berliner) strains in Kenya for toxicity to the spotted stem borer, Chilo partellus (Swinhoe). Trop. Pest Manag. 38, 77–81

    Article  Google Scholar 

  16. Brunel B, Perissol C, Fernandez M et al (1994) Occurrence of Bacillus species on evergreen oak leaves. FEMS Microbiol. Ecol. 14, 331–342

    Google Scholar 

  17. Burges HD and Hurst JA (1977) Ecology of B. thuringiensis in storage moths. J. Invert. Path. 30, 131–139

    Article  Google Scholar 

  18. Chak KF, Chao DC, Tseng MY, et al (1994) Determination and distribution of cry-type genes of B. thuringiensis isolates from Taiwan. Appl. and Environ. Microbiol. 60, 2415–2420

    CAS  Google Scholar 

  19. Chilcott CN and Wigley PJ (1993) Isolation and toxicity of B. thuringiensis from soil and insect habitats in New-Zealand. J. Invert. Path. 61, 244–247

    Article  Google Scholar 

  20. Côté JC, Fréchette S and Vincent C (1992) Isolation of B. thuringiensis from the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). 25th Annual Meeting of Society for Invertebrate Pathology, 16–21 August, Heidelberg, Germany Abst # 168

    Google Scholar 

  21. Damgaard PH, Granum, PE, Bresciani J et al (1997) Characterization of B. thuringiensis isolated from infections in burn wounds. FEMS Immun. and Medical Microbiol. 18, 47–53

    Article  CAS  Google Scholar 

  22. Damgaard PH, Abdel-Hameed A, Eilenberg J et al (1998) Natural occurrence of B. thuringiensis on grass foliage. World J. Microbiol. and Biotech 14, 239–242

    Article  Google Scholar 

  23. Damgaard PH, Hansen BM, Pedersen JC et al (1997) Natural occurrence of B. thuringiensis on cabbage foliage and in insects associated with cabbage crops. J. Appl. Bact. 82, 253–258

    CAS  Google Scholar 

  24. Damgaard PH, Larsen HD, Hansen BW et al (1996) Enterotoxin-producing strains of B. thuringiensis isolated from food. Lett. Appl. Microbiol. 23, 146–150

    Article  PubMed  CAS  Google Scholar 

  25. Damgaard PH, Malinowski H, Glowacka B et al (1996) Degradation of B. thuringiensis serovar kurstaki after aerial application to a Polish pine stand. IOBC/WPRS Bulletin 19, 61–65

    Google Scholar 

  26. Damgaard PH, Skovmand O and Eilenberg J (1992) Protection of the S-endotoxin of B. thuringiensis var. kurstaki HD-1 against sunlight inactivation. 25th Annual Meeting of Society for Invertebrate Pathology, 16–21 August, Heidelberg, Germany Abst # 165

    Google Scholar 

  27. de Barjac H (1978) A new subspecies of B. thuringiensis very toxic for mosquitoes B. thuringiensis var. israelensis sero-type 14. Comptes Rendus de l’Academie des Sciences Paris, ser D 286, 797–800

    Google Scholar 

  28. DeLucca AJ, Palmgren MS and Ciegler A (1982) B. thuringiensis in grain elevator dusts. Can. J. Microbiol. 28, 452–456

    Google Scholar 

  29. DeLucca AJI, Simonson JG and Larson AD (1981) B. thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27, 865–870

    Google Scholar 

  30. Donovan WP, Gonzalez JM Jr., Gilbert MP et al (1988) Isolation and characterization of EG2158, a new strain of B. thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. Mol. and Gen. Gene. 214, 365–372

    CAS  Google Scholar 

  31. Dryden MS (1987) Pathogenic role of Bacillus cereus in wound infections in the tropics. J. Roy. Soc. Med. 80, 480–481

    PubMed  CAS  Google Scholar 

  32. Dryden MS and Kramer JM (1987) Toxigenic Bacillus cereus as a cause of wound infections in the tropics. J. Infec. 15, 207–212

    Article  CAS  Google Scholar 

  33. Dulmage HT (1970) Insecticidal activity of HD-1, a new isolate of B. thuringiensis var. alesti. J. Invert. Path. 15, 232–239

    Article  Google Scholar 

  34. Dulmage HT and Aizawa K (1982) Distribution of B. thuringiensis in nature. In: Kurstak E, ed. Microbial and Viral Pesticides. Marcel Dekker (New York), 209–237.

    Google Scholar 

  35. Flanders SE and Hall IM (1965) Manipulated bacterial epizootics in Anagasta populations. J. Invert. Path. 7, 368–377

    Article  Google Scholar 

  36. Fuxa JR (1982) Prevalence of viral infections in populations of fall armyworm, Spodoptera frugiperda, in southeastern Louisiana. Environ. Entom. 11, 239–242

    Google Scholar 

  37. Fuxa JR and Tanada Y (1987) Epidemiological concepts applied to insect epizootiology. In: Fuxa JR, Tanada Y, eds. Epizootiology of Insect Diseases. John Wiley and Sons (New York), 3–41

    Google Scholar 

  38. Gingrich RE (1984) Control of the horn fly, Haematobia irritans, with B. thuringiensis. In: Cheng TC, ed. Comparative pathobiology - Pathogens of Invertebrates. Plenum Press (New York), 47–57

    Google Scholar 

  39. Goldberg LJ and Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosquito News 37, 355–358

    Google Scholar 

  40. Hajek AE, Humber RA, Elkinton JS et al (1990) Allozyme and restriction fragment length polymorphism analyses confirm Entomophaga maimaiga responsible for 1989 epizootics in North American gypsy moth populations. Proc. Nat. Acad. Sci. USA 87, 6979–6982

    Article  PubMed  CAS  Google Scholar 

  41. Hansen BM, Damgaard PH, Eilenberg J et al (1996) B. thuringiensis - Ecology and environmental effects of its use for microbial pest control. Danish EPA Project No. 316, pp. 125

    Google Scholar 

  42. Harper JD (1987) Applied epizootiology: Microbial control of insects. In: Fuxa JR, Tanada Y, eds. Epizootiology of Insect Diseases. John Wiley and Sons (New York), 473–496

    Google Scholar 

  43. Hastowo S, Lay BW and Ohba M (1992) Naturally occurring B. thuringiensis in Indonesia. J. Appl. Bact. 73, 108–113

    Article  Google Scholar 

  44. Humber RA (1976) The systematics of the genus Strongwellsea (Zygomycetes: Entomophthorales). Mycologia 58, 1042–1060

    Article  Google Scholar 

  45. Ignoffo CM, Hostetter DL and Pinnell RE (1974) Stability of B. thuringiensis and Baculovirus heliothis on soybean foliage. Environ. Entom. 3, 117–119

    Google Scholar 

  46. Ishii T and Ohba M (1993) Characterization of mosquito-specific B. thuringiensis strains coisolated from a soil population. Syst. and Appl. Microbiol. 16, 494–499

    Google Scholar 

  47. Ishikawa Y, Hayashida T and Ikawa A (1964) On the isolation of B. thuringiensis from silkworm rearing houses in Aichi prefecture. J. of Sericult. Sci. Jap. 33, 480–483

    Google Scholar 

  48. Ishiwata S (1901) On a kind of severe flacherie (sotto diseases) (In Japanese). Dainihon Sanshi Kaiho 114, 1–5

    Google Scholar 

  49. Itoua-Apoyolo C, Drif L, Vassal JM et al (1995) Isolation of multiple subspecies of B. thuringiensis from a population of the European sunflower moth, Homoeosoma nebulella. Appl. and Environ. Microbiol. 61, 4343–4347

    CAS  Google Scholar 

  50. Jackson SG, Goodbrand RB, Ahmed R et al (1995) Bacillus cereus and B. thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21, 103–105

    Google Scholar 

  51. Kaelin P, Morel P, Gadani F (1994) Isolation of B. thuringiensis from stored tobacco and Lasioderma serricorne. Appl. and Environ. Microbiol. 60, 19–25

    CAS  Google Scholar 

  52. Khawaled K, Ben-Dov E, Zaritsky A et al (1990) The fate of B. thuringiensis var. israelensis in B. thuringiensis var. israelensis-killed pupae of Aedes aegypti. J. Invert. Path. 56, 312–316

    Article  CAS  Google Scholar 

  53. Khawaled K, Cohen T and Zaritsky A (1992) Digestion of B. thuringiensis var. israelensis spores by larvae of Aedes aegypti. J. Invert. Path. 59, 186–189

    Article  CAS  Google Scholar 

  54. Krieg A, Huger AM, Langenbruch GA et al (1983) B. thuringiensis var. tenebrionis: a new pathotype effective against larvae of Coleoptera. Zeitschrift für Angewandte Entomologie 96, 500–508

    Google Scholar 

  55. Kurstak E (1962) Données sur l’epizootie bacterienne naturelle provoguée par un Bacillus du type B. thuringiensis sur Ephestia kuhniella. Entomophaga Memoire Hors Serié 2, 245–247

    Google Scholar 

  56. Kurstak ES (1964) Le processus de l’infection par B. thuringiensis Berl. d’Ephestia kühniella Zell. déclenché par le parasitisme de Nemeritis canescens Gray. (Ichneumonidae). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 259, 211–212

    Google Scholar 

  57. Landén R, Bryne M and Abdel-Hameed A (1994) Distribution of B. thuringiensis strains in southern Sweden. World J. Microbiol. and Biotech. 10, 45–50

    Article  Google Scholar 

  58. Margalit J, Dean D (1985) The story of B. thuringiensis var. israelensis. J Am Mosq Control Assoc 1, 1–7

    PubMed  CAS  Google Scholar 

  59. Martin PAW (1991) Dynamics of B. thuringiensis turnover in soil. The General Meeting of The American Society For Microbiol., 1–6 July, Washigton, USA # 315

    Google Scholar 

  60. Martin PAW and Travers RS (1989) Worldwide abundance and distribution of B. thuringiensis isolates. Appl. and Environ. Microbiol. 55, 2437–2442

    CAS  Google Scholar 

  61. Mckee LH (1995) Microbial contamination of spices and herbs: A review. Food Sci. and Tech. 28, 1–11

    CAS  Google Scholar 

  62. Meadows MP, Ellis DJ and Butt J (1992) Distribution, frequency, and diversity of B. thuringiensis in an animal feed mill. Appl. and Environ. Microbiol. 58, 1344–1350

    CAS  Google Scholar 

  63. Morris ON (1977) Long term study of the effectiveness of aerial application of B. thuringiensis-acephate combination against the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Entom. 109, 1239–1248

    Article  CAS  Google Scholar 

  64. Morris-Coole C (1995) B. thuringiensis: Ecology, the significance of natural genetic modification, and regulation. World J. Microbiol. and Biotech. 11, 471–477

    Google Scholar 

  65. Norris JR (1969) The ecology of serotype 4B of B. thuringiensis. J. Appl. Bact. 32, 261–267

    Article  CAS  Google Scholar 

  66. Ohba M (1996) B. thuringiensis populations naturally occurring on mulberry leaves: a possible source of the populations associated with silkworm-rearing insectaries. J. Appl. Bact. 80, 56–64

    Google Scholar 

  67. Ohba M and Aizawa K (1978) Serological identification of B. thuringiensis and related bacteria isolated in Japan. J. Invert. Path. 32, 303–309

    Article  Google Scholar 

  68. Ohba M and Aizawa K (1986) Insect toxicity of B. thuringiensis isolated from soils of Japan. J. Invert. Path. 47, 12–20

    Article  Google Scholar 

  69. Ohba M and Aizawa K (1989) Distribution of the four flagellar (H) antigenic subserotypes of B. thuringiensis H serotype 3 in Japan. J. of Appl. Bact. 67, 505–509

    Article  Google Scholar 

  70. Ohba M, Aizawa K and Furusawa T (1979) Distribution of B. thuringiensis serotypes in Ehime prefecture, Japan. Appl. Entom. and Zool. 14, 340–345

    Google Scholar 

  71. Ohba M, Aizawa K and Sudo SI (1984) Distribution of B. thuringiensis in sericultural farms of Fukuoka Prefecture, Japan. Proc. Assoc. Plant Protection of Kyushu 30, 152–155

    Article  Google Scholar 

  72. Ohba M and Aratake Y (1994) Comparative study of the frequency and flagellar serotype flora of B. thuringiensis in soils and silkworm-breeding environments. J. Appl. Bact. 76, 203–209

    Article  Google Scholar 

  73. Ono K and Watanabe H (1983) Distribution and serological identification of B. thuringiensis isolated in Japan. J. Sericult. Sci. Japan 52, 47–50

    Google Scholar 

  74. Padua LE, Gabriel BP, Aizawa K et al (1982) B. thuringiensis isolated from the Philippins. The Philippine Entom. 5, 185–194

    Google Scholar 

  75. Pedersen JC, Damgaard PH, Eilenberg J et al (1995) Dispersal of B. thuringiensis var kurstaki in an experimental cabbage field. Can. J. Microbiol. 41, 118–125

    Article  CAS  Google Scholar 

  76. Pinnock DE, Brand RJ and Milstead JE (1971) The field persistence of B. thuringiensis spores. J. Invert. Path. 18, 405–411

    Article  Google Scholar 

  77. Pozsgay M, Fast P and Kaplan H, (1987) The effect of sunlight on the protein crystals from B. thuringiensis var. kurstaki HD1 and NRD12: a Raman spectroscopic study. J. Invert. Path. 50, 246–253

    Article  CAS  Google Scholar 

  78. Pruett CJH, Burges HD and Wyborn CH (1980) Effect of exposure to soil on potency and spore viability of B. thuringiensis. J. Invert. Path. 35, 168–174

    Article  Google Scholar 

  79. Purrini K (1977) Über die Verbreitung von B. thuringiensis Berl. and einiger Sporozoen-Krankheiten bei vorratsschädlichen Lepidopteren im Gebiet von Kosova, Jugoslawien. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 50, 169–173

    Google Scholar 

  80. Pusztai M, Fast P, Gringorten L et al (1991) The mechanism of sunlight-mediated inactivation of B. thuringiensis crystals. Biochem. J. 273, 43–47

    PubMed  CAS  Google Scholar 

  81. Rongsen L, Shunying D, Xiaogang L et al (1990) Survey of B. thuringiensis and Bacillus sphaericus from soils of four provinces of China and their principal biological properties (Abstract, Tables and Figures in English). Acta Microbiologica Sinica 30, 380–388

    Google Scholar 

  82. Smith RA and Couche GA (1991) The phylloplane as a source of B. thuringiensis variants. Appl. and Environ. Microbiol. 57, 311–315

    CAS  Google Scholar 

  83. Stout JD (1961) A bacterial survey of some New Zealand forest lands, grasslands, and peats. New Zealand J. Agric. Res. 4, 1–30

    Article  Google Scholar 

  84. Talalaev EV (1956) Septicemia of the caterpillars of the Siberian silkworm (In Russian). Mikrobiologiya 25, 99–102

    CAS  Google Scholar 

  85. to Giffel MC, Beumer RR, Slaghuis BA et al (1995) Occurrence and characterization of (psychrotrophic) Bacillus cereus on farms in the Netherlands. Netherlands Milk and Dairy J. 49, 125–138

    Google Scholar 

  86. Valentino L and Torregrossa MV (1995) Risk of Bacillus cereus and Pseudomonas aeruginosa nosocomial infections in a burns centre: The microbiological monitoring of water supplies for a preventive strategy. Water Sci. and Tech. 31, 37–40

    Article  Google Scholar 

  87. Vankova J and Purrini K (1979) Natural epizooties caused by bacilli of the species B. thuringiensis and Bacillus cereus. Zeits. Angew. Entom. 88, 216–221

    Article  Google Scholar 

  88. Watanabe H (1987) The host population. In: Fuxa JR, Tanada Y, eds. Epizootiology of Insect Diseases. John Wiley and Sons (New York), 71–112.

    Google Scholar 

  89. West AW and Burges HD (1982) Ecology of B. thuringiensis in soil. 15th Annual Meeting of the Society for Invertebrate Pathology, 6–10 September, Brigton, UK Abst # 319

    Google Scholar 

  90. West AW, Burges HD, White RJ et al (1984) Persistence of B. thuringiensis parasporal crystal insecticidal activity in soil. J. Invert. Path. 44, 128–133

    Article  Google Scholar 

  91. Zaritsky A and Khawaled K (1986) Toxicity in carcasses of B. thuringiensis var. israelensis-killed Aedes aegypti larvae against scavenging larvae: implications to bioassay. J. Am. Mosq. Control. Assoc. 2, 555–559

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Damgaard, P.H. (2000). Natural occurrence and dispersal of Bacillus thuringiensis in the environment. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics