Skip to main content

Abstract

Bacillus thuringiensis (Bt) has been the leading microbe in agriculture since the 1960s. During the last 40 years, substantial knowledge and experience of uses of Bt against lepidopteran and coleopteran insects in the field have been accumulated and aspects covered include with regard to: natural and genetically modified products, larval age, insect feeding behaviour, environmental constraints, safety, timing of application, formulation, application technologies. The knowledge of interactions of Bt with other entomopathogenic microbes, natural enemies and natural and selective insecticides, is useful in selecting compatibilities and to promote synergistic effects between this microbe and other means of pest control. The new choice of Bt products, uses of the microbe against 1st instar defoliators, and the combinations of Bt with parasitoids and predators have been effectively introduced into pest control strategies. Novel Bt products against wider insect host range, new formulations and application technologies which will prolong residual activities of the microbe can increase the use of Bt in insect pest management strategies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood, DW, Young SY III and Kring TJ (1997) Development of Cotesia (Hymenoptera: Braconidae) in tobacco budworm (Lepidoptera: Noctuidae) larvae treated with Bacillus thuringien and thiodicarb. J. Econ. Entomol. 90, 751–756

    Google Scholar 

  2. Atwood DW, Young SY, III and Kring Ti (1997) Impact of Bt and thiodicarb alone and in combination on tobacco budworm, mortality and emergence of the parasitoid Microplitis croceipes. vol 2 pp. 1305–1310. Proc. Beltwide Cotton Conf., National Cotton Council, New Orleans, USA

    Google Scholar 

  3. Bauer ME, Kaya HK, Tabashnik BE and Chilcutt CF (1998) Suppression of Diamondback moth (Lepidoptera:Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis. J. Econ. Entomol. 91, 1089–1095

    Google Scholar 

  4. Baum JA, Timothy BJ and Carlton, BC (1999) Bacillus thuringiensis, p. 189–209. In Hall FR and Menn JJ (eds.), Biopesticide use and delivery, Humana Press, NJ. USA

    Google Scholar 

  5. Blumberg D, Navon A, Keren S, Goldenberg S and Ferkovich SM (1997) Interactions among Helicoverpa armigera (Lepidoptera: Noctuidae), its larval endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis. J. Econ. Entomol. 90, 1181–1186

    Google Scholar 

  6. Bryant JE (1994) Application strategies for Bacillus thuringiensis. Agric. Ecosys. Environ. 49, 65–75

    Article  Google Scholar 

  7. Burges HD (1967) The standardization of products based on Bacillus thuringiensis, p. 306–308. Proceedings of the International Colloquium on Insect Pathology and Microbial Control, Wageningen, The Netherlands

    Google Scholar 

  8. Burges HD and Jones KA (1999) Formulation of bacteria, viruses and protozoa to control insects, p. 34–127. In Burges HD (ed.), Formulation of microbial biopesticides, Kluwer Acedemic Publisher, Dordrecht, The Netherlands

    Google Scholar 

  9. Cannon RJC (1996) Bacillus thuringiensis use in agriculture: A molecular perspective. Biol. Rev. 71, 561–636

    Article  Google Scholar 

  10. Chilcutt CF and Tabashnik BE (1997) Host-mediated competition between the pathogen Bacillus thuringiensis and the parasitoid Cotesia plutella of the diamondback moth (Lepidoptera: Plutellidae). Environ. Entomol. 26, 38–45

    Google Scholar 

  11. Cloutier C and Jean C (1998) Synergism between natural enemies and biopesticides: a test case using stinkbug Perillus bioculatus (Hemiptera: Pentatomidae) and Bacillus thuringiensis tenebrionis against Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 91, 1096–1108

    Google Scholar 

  12. Cohen E, Rozen, H, Joseph T and Margulis L (1991) Photoprotection of Bacillus thuringiensis var. kurstaki from ultra-violet irradiation. J. Invertebr. Pathol. 57, 343–351

    Article  CAS  PubMed  Google Scholar 

  13. Dent DR (1993) The use of Bacillus thuringiensis as an insecticide, p. 19–44. In Jones DG (ed.), Exploitation of Microorganisms, Chapman and Hall, London. UK

    Chapter  Google Scholar 

  14. Dubois NR and Dean DH (1995) Synergism between CrylA insecticidal crystal proteins and spores of Bacillus thrinigiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environ. Entomol. 24, 1741–1747

    Google Scholar 

  15. Dulmage HD (1970) Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Invertebr. Pathol. 15, 232–239

    Article  Google Scholar 

  16. Dunkle RL and Shasha BS (1988) Stasrch-encapsulated Bacillus thuringiensis: A new method for increasing environmental stability of entomopathogens. Environ. Entomol., 17, 120–126

    Google Scholar 

  17. Dunkle RL and Shasha BS (1989) Response of starch encapsulatred Bacillus thuringiensis containing UV screens to sunlight. Environ. Entomol. 18, 1035–1041

    Google Scholar 

  18. Entwistle PE, Cory, JS Bailey MJ and Higgs, S (eds.) (1993) Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, 311 pp. John Wiley and Sons, Chichester, UK

    Google Scholar 

  19. Ferro DH and Lyon SM (1991) Colorado potato beetle (Coleoptera: Chrysomelidae) larval mortality: Operative effects of Bacillus thuringiensis subsp. san diego. J. Econ. Entomol. 84, 806–809

    Google Scholar 

  20. Ferro DH, Yuan QC, Slocombe A and Tutle A (1993) Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 86, 511–516

    CAS  Google Scholar 

  21. Forrester NW (1994) Use of Bacillus thuringiensis in integrated control, especially on cotton pests. Agric. Ecosys. Environ. 49, 77–83

    Article  Google Scholar 

  22. Fuxa J (1989) Fate of released entomopathogens with reference to risk assessement of genetically engineered microorganisms. Bull. Entomol. Soc. Am. 35, 12–24

    Google Scholar 

  23. Ghidiu GM and Zehnder GW (1993) Timing of the initial spray application of Bacillus thuringiensis for control of the Colorado potato beetle (Coleoptera: Chrysomelidae) in potatoes. Biological Control 3, 348–352

    Article  Google Scholar 

  24. Gould F, Anderson, A, Landism D and Van Mellert H (1991) Feeding behavior and growth of Heliothis virescens larvae on on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol. Exp. Appl. 58, 199–210

    Article  Google Scholar 

  25. Hall FR, Chapple AC, Taylor RAJ and Downer RA (1995) Modeling the dose acquisition process of Bacillus thuringiensis, p. 68–78. In Hall FR and Barry JW (eds.), Biorational Pest Control Agents Formulation and Delivery, ACS Symposium Series 595, London, UK

    Chapter  Google Scholar 

  26. Hand SS and Luttrell RG (1997) Strategies for foliar application of Bacillus thuringiensis in cotton Vol. 2 pp. 1151–1157. Proc. Beltwide Cotton Conf. National Cotton Council, New Orleans, USA

    Google Scholar 

  27. Hassan SA (1983) Results of laboratory testing of a series of pesticides on egg parasites of the genus Trichogramma (Hymenoptera: trichogrammatidae) Nachrichtenbl. Dtsch Pflkanzenschutzdienst (Braunschw.) 35, 21–25

    CAS  Google Scholar 

  28. Hassan E and Graham-Smith S (1995) Toxicity of endosulfan, esfenvalerate and Bacillus thuringiensis on adult of Microplitis demolitor Wilkinson and Trichogrammatoidea bactrae Nagaraja. Z. Pflanzenk. Pflanzensch. 102, 442–428

    Google Scholar 

  29. Herrnstadt C, Soares GG, Wilcox ER and Edwards DL (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Bio/Technology, 4, 305–308

    Article  CAS  Google Scholar 

  30. Hoy CW and Hall FR (1993) Feeding behaviour of Plutella xylostella and Leptinotarsa decemlineata on leaves treated with Bacillus thuringiensis and esfenvalerate. Plant Sci. 38, 335–340

    CAS  Google Scholar 

  31. Krieg A, Huger AM, Langenbruch GA and Schnetter, W (1983) Bacillus thuringiensis var. tenbrionis: ein neuer, glarven von Coleoptaran wirksamer pathotype. Z. angew. Entomol. 96, 500–508

    Article  Google Scholar 

  32. Kring TJ and Smith TB (1995) Trichogramma pretiosum efficacy in cotton under Bt-insecticide combinations. Vol 2, pp. 856–857. Proc. Beltwide Cotton Conf., National Cotton Council. San Antonio, TX, USA

    Google Scholar 

  33. Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42, 112–121

    Article  Google Scholar 

  34. Lopez R and Ferro DN (1995) Larviposition response of Myiopharus doryphorae (Diptera: Tachinidae) to Colorado potato beetle (Coleoptera: Chrysomelidae) larvae treated with lethal and sublethal doses of Bacillus thuringiensis Berliner subsp. tenebrionis. J. Econ. Entomol. 88, 870–874

    Google Scholar 

  35. Ludlum CT, Felton GW and Duffey SS (1991) Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea. J. Chem. Ecol. 17, 217–237

    Article  CAS  Google Scholar 

  36. McClintock JT, Schaffer CR and Sjoblad RD (1995) A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pest. Sci. 45, 95–105

    Article  CAS  Google Scholar 

  37. McGuire MR and Shasha BS (1995) Starch encapsulation of microbial pesticide, p. 229–237. In Hall FR and Barry JW (eds.), Biorational Pest Control Agents Formulation and Delivery, ACS Symposium Series 595, London, UK

    Chapter  Google Scholar 

  38. Moar WJ, Trumble JT and Federici BA (1989) Comparative toxicity of spores and crystals from the NRD-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate beet armyworm (Lepidoptera: Noctuidac). J. Econ. Entomol. 82, 1593–1603

    CAS  Google Scholar 

  39. Morris ON, Trorrier M, McLaughlin NB and Converse V (1994) Interaction of caffeine and related compounds with Bacillus thuringiensis ssp. kurstaki in Bertha armyworm (Lepidoptera: Nuctuidae) J. Econ. Entomol. 87, 610–617

    CAS  Google Scholar 

  40. Muckenfuss AE and Shepard BM (1994) Seasonal abundance and response of Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), and natural enemies to esfenvalerate and Bacillus thuringiensis subsp. kurstaki Berliner in coastal South Carolina. J. Agric. Entomol. 11: 361–373

    Google Scholar 

  41. Murray KD, Alford AR, Groden E, et al.,(1993) Interactive effects of an antifeedant used with Bacillus thuringiensis var. san diego delta-endotoxin on Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 86, 1793–1801

    CAS  Google Scholar 

  42. Nakamura LK and Dulmage HT (1988) Bacillus thuringiensis cultures available from the U.S. Department of Agriculture. U.S. Department of Agriculture, Technical Bulletin No 1738, 38

    Google Scholar 

  43. Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis pp. 125146. In Entwistle PF, Cory JS, Bailey MJ andHiggs S (eds.), Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. John Wiley and Sons, New York

    Google Scholar 

  44. Navon A (2000) Bioassays of Bacillus thuringiensis. In Bioassays of Entomopathogenic Microbes and Nematodes. CABI Publishing, UK (in press)

    Google Scholar 

  45. Navon A and Gelernter W. (1996) Proposals for addressing standardization issues. p. 29. Abst. of SIP 29th Ann. Meeting and IIIrd Internat. Colloq. On Bacillus thuringiensis. Cordoba, Spain

    Google Scholar 

  46. Navon A, Klein M and Braun S (1990) Bacillus thuringiensis potency bioassays against Heliothis armigera, Earias insulana, and Spodoptera littoralis larvae based on standardized diets. J. Invertebr. Pathol., 55, 387–393

    Article  CAS  PubMed  Google Scholar 

  47. Navon A, Hare, JD and Federici, BA (1993) Interactions among Heliothis virescens larvae, cotton condensed tannin and the CryIA(c) endotoxin of Bacillus thuringiensis. J. Chem. Ecol. 19, 2485–2499

    Article  CAS  Google Scholar 

  48. Navon A, Keren S, Levski S, Grinstein A and Riven J. (1997) Granular feeding baits based on Bacillus thuringiensis products for the control of lepidopterous pests. Phytoparasitica 25 (suppl), 1015–1105

    Article  Google Scholar 

  49. Patel KR, Wyman JA, Patel KA and Burden, BJ (1996) A mutant of Bacillus thuringiensis producing a dark-brown pigment with increased UV resistance and insecticidal activity. J. Invertebr. Pathol. 67, 120–124

    Article  Google Scholar 

  50. Ramos LM, McGuire MR and Galan Wong LJ (1998) Utilization of several biopolymers for granular formulations of Bacillus thuringiensis. J. Econ. Entomol. 91, 1109–1113

    Google Scholar 

  51. Roltsch WJ, Zalom FG, Barry JW, Kirfman GW and Edstrom JP (1994) Ultra-low volume aerial application of Bacillus thuringiensis variety kurstaki for the control of peach twig borer in almond trees. Appl. Eng. Agric. 11, 25–30

    Google Scholar 

  52. Sample JR and Buettner H (1983) Ocular infection caused by a biological insecticide. J. Infec. Dis. 148, 614

    Article  Google Scholar 

  53. Sebesta K, Farkas J, Horska K and Vankova J (1981) Thuringiensin, the beta-exotoxin of Bacillus thuringiensis, p. 249–282. In Burges HD (ed.), Microbial control of pests and plant diseases 1970–1980, Academic Press, London, UK

    Google Scholar 

  54. Shah PA and Goettel MS (eds.) (1999) Directory of microbial control products and services, p. 31, In Society of invertebrate Pathology, Gainesville, FL 32614–7050, USA

    Google Scholar 

  55. Tabashnik BE, Cushing NL, Finson N and Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth. Journal of Economic Entomology, 83, 1671–1676

    Google Scholar 

  56. Trumble J and Alvarado-Rodriguez B (1993) Development of economic evaluation of an IPM program for fresh market tomato production in Mexico. Agric. Ecosys. Environ. 43, 267–284

    Article  Google Scholar 

  57. van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis, p. 1–35. In Entwistle PF, Cory JS, Bailey MJ andHiggs S (eds.), Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, John Wiley and Sons, New York

    Google Scholar 

  58. Walter JF (1999) Commercial exerience with neem products, p. 155–163. In Hall R and Menn JJ (ed.), Biopesticide Use and Delivery, Humana Press, NJ, USA

    Google Scholar 

  59. Wysoki M (1989) Bacillus thuringiensis preparations as a means for the control of lepidopterous pests in Israel. Isr. J. Entomol. 23, 119–129

    Google Scholar 

  60. Young SY, Kring TJ, Johnson DR and Klein CD (1997) Bacillus thuringiensis alone and in mixtures with chemical insecticides against heliothines and effects on predator densities in cotton. J. Entomol. Sci. 32, 183–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Navon, A. (2000). Bacillus thuringiensis application in agriculture. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics