Skip to main content

Is Bacillus thuringiensis standardisation still possible?

Update and improvement of Bt titration over 20 years

  • Chapter

Abstract

The aim of this review is to clarify the situation surrounding titration of bacterial formulations against Bacillus reference standards and to discuss the importance of standard procedures. Secondly, with the presence of numerous B. thuringiensis Cry toxins, we examine a possible remedy for the absence of classical reference standards. We propose a new way of titrating Bt products combining insect based bioassays and quantitative determination of toxin protein with biochemical methods. Further, we suggest improvement in the standard protocols used for bioassays and the statistical methods applied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adang MJ, Stayer MJ, Rocheleau TA et al. (1985) Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36, 289–300

    Article  PubMed  CAS  Google Scholar 

  2. Andrews REJ, Bibilos MM & Bulla LAJ (1985) Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 50, 734–742

    Google Scholar 

  3. Aranda E, Sanchez J, Peferoen M, Guëreca L & Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 68, 203–212

    Article  PubMed  CAS  Google Scholar 

  4. Bai C, Degheele D, Jansens S & Lambert B (1993) Activity of insecticidal crystal proteins and strains of Bacillus thuringiensis against Spodoptera exempta (Walker). J. Invertebr. Pathol. 62, 211–215

    Article  CAS  Google Scholar 

  5. Beegle CC (1981) Basic differences between Bacillus thuringiensis var. israelensis and Lepidopterous active varieties. XIVth Ann. Meeting Soc. Invertebr. Pathol., Bozeman, Montana

    Google Scholar 

  6. Beegle CC (1990) Bioassay methods for quantification of Bacillus thuringiensis 8-endotoxin, p. 14–21. In: Hickle LA & Fitch WL (ed.), Analytical Chemistry of Bacillus thuringiensis, ACS Symposium series, American Chemical Society, Washington DC 1990

    Google Scholar 

  7. Bonnefoi A, Burgerjon A & Grison P (1958) Titrage biologique des préparations de spores de Bacillus thuringiensis. C.R. Acad. Sci. 27, 1418–1420

    Google Scholar 

  8. Bourgouin C, Larget-Thiéry I & de Barjac H (1984) Efficacy of dry powders from Bacillus sphaericus: RB80, a potent reference preparation for biological titration. J. Invertebr. Pathol. 44, 146–150

    Article  PubMed  CAS  Google Scholar 

  9. Burgerjon A & Dulmage H (1977) Industrial and International standardization of microbial pesticides–I. Bacillus thuringiensis. Entomophaga 22, 121–129

    Article  Google Scholar 

  10. Burgerjon A & Yamvrias C (1959) Méthode de titrage des préparations à base de Bacillus thuringiensis Berliner avec Anagasta kühniella Zell. C. R. Acad. Sci., Paris, 249, 2871–2872

    CAS  Google Scholar 

  11. Burges HD (1976) Techniques for the bioassay of Bacillus thuringiensis with Galleria mellonella. Entomologia Exp. Appl. 19, 243–254

    Article  Google Scholar 

  12. Chakrabati SK, Mandaokar A, Kumar PA & Sharma RP (1998) Efficacy of Leipdopteran specific S-endotoxins of Bacillus thuringiensis against Helicoverpa armigera. J. Invertebr. Pathol. 72, 336–337

    Article  Google Scholar 

  13. Chambers JA, Jelen A, Gilbert MP et al. (1991) Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173, 3966–3976

    PubMed  CAS  Google Scholar 

  14. de Barjac H & Larget I (1979) Proposals for the adoption for standardized bioassay method for the evaluation of insecticidal formulations derived from serotype H14 of Bacillus thuringiensis var. israelensis. Mimeogr. Doc., WHO/VBC/79–744, 15 pp.

    Google Scholar 

  15. de Barjac H & Larget-Thiéry I (1984) Characteristics of IPS82 as standard for biological assay of Bacillus thuringiensis H-14 preparations. Mimeogr. Doc., WHO/VBC/84. 892, 1O pp.

    Google Scholar 

  16. De Leon T & Ibarra JE (1995) Alternative bioassay technique to measure activity of Cry III proteins of Bacillus thuringiensis. J. Econ. Entomol. 88, 1596–1601

    Google Scholar 

  17. Dulmage H, Boening OP, Rehnborg CS & Hansen GD (1971) A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the International Units. J. Invertebr. Pathol. 18, 240–245

    Article  PubMed  CAS  Google Scholar 

  18. Dulmage HT (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. Microbial Control of Pests and Plant Diseases, p. 193222. In Burges HD (ed.), Academic Press

    Google Scholar 

  19. Dulmage HT, Mc Laughlin RE, Lacey LA et al. (1985) HD-968-S-1983, a proposed U.S. standard for bioassays of preparations of Bacillus thuringiensis subsp. israelensis-H14. Bull. Entomol. Soc. Am. 31, 31–34

    Google Scholar 

  20. Faust RM, Reichelderfer CF & Thorne CB (1981) Plasmid-bacteriophagerecombinant DNA in genetic manipulations of entomopathogenic bacteria, p 225–254. In: Panopoulos NJ (ed), Genetic Engineering in the Plant Sciences, Prager Publications, Inc.

    Google Scholar 

  21. Federici BA & Wu D (1994) Synergism of insecticidal activity in Bacillus thuringiensis. In Ackhurst R (ed), Proc. II Bacillus thuringiensis meeting, Canberra 1994

    Google Scholar 

  22. Ferro DN & Gelerntner WD (1989) Toxicity of a new strain of Bacillus thuringiensis to Colorado Potato Bettle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 82, 750–755

    Google Scholar 

  23. Finney DJ (1971) Probit analysis. A statistical treatment of the sigmoid response curve. University Press, Cambridge

    Google Scholar 

  24. Frankenhuyzen K (van), Gringorten JL, Mile RE et al. (1991) Specificity of activiated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest lepidoptera. Appl. Environ. Microbiol. 57, 1650–1655

    PubMed  Google Scholar 

  25. Ge AZ, Shivarova NI & Dean DH (1989) Location of the Bombyx mori specificity domain on a Bacillus thuringiensis S-endotoxin protein. Proc. Natl. Acad. Sci. USA 86, 4037–4041

    Article  PubMed  CAS  Google Scholar 

  26. Biochem. Biophys. Res. Commun. 224, 779–783

    Google Scholar 

  27. Höfte H & Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255

    PubMed  Google Scholar 

  28. Krieg A, Huger AM, Langenbruch GA & Schnetter W (1983) Bacillus thuringiensis subsp. tenebrionis: ein neuer, gegenüber Larven von coleopteran wirksamer Pathotyp. Z. Ang. Entomol. 96, 500–508

    Google Scholar 

  29. Lövgren A, Zhang M, Engström A, Dalhammar G & Landën R (1990) Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol. Microbiol. 4, 2137–2146

    Article  PubMed  Google Scholar 

  30. MacIntosh SC, Stone TB, Sims SR et al. (1990) Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J. Invertebr. Pathol. 56, 258–266

    Article  PubMed  CAS  Google Scholar 

  31. Marrone PG, Ferri FD, Mosley TR & Meinke LJ (1985) Improvements in laboratory rearing of the southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae), on an artificial diet and corn. J. Econ. Entomol. 78, 290–293

    Google Scholar 

  32. Masson L, Erlandson M, Purtai-Carey M et al. (1998) A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol. 64, 478–288

    Google Scholar 

  33. Mc Guire MR, Galan-Wong LJ & Tamez-Guerra P (1997) Bacteria: Bioassay of Bacillus thuringiensis against lepidopteran larvae, p. 91–99. In: Lacey L (ed.), Manual of Techniques in Insect Pathology, Academic Press, San Diego, London

    Google Scholar 

  34. Mc Laughlin RE, Dulmage HT, Alls R et al. (1984) A U.S. standard bioassay for the potency assessment of Bacillus thuringiensis serotype H-14 against mosquito larvae. Bull. Entomol. Soc. Am. 30, 26–29

    Google Scholar 

  35. Mian LS & Mulla MS (1983) Effect of proteolytic enzymes on the activity of Bacillus sphaericus against Aedes aegypti and Culex quinquefasciatus ( Diptera: Culicidae).

    Google Scholar 

  36. Moar WJ, Masson L, Brousseau R & Trumble JT (1990) Toxicity to Spodoptera exigua and Trichoplusia ni of individual P1 protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12. Appl. Environ. Microbiol. 56, 2480–2483

    PubMed  CAS  Google Scholar 

  37. Moar WJ, Trumble JT, Hice RH & Backman PA (1994) Insecticidal activity of the CryI1A protein from NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl. Environ. Microbiol. 60, 896–902

    PubMed  CAS  Google Scholar 

  38. Padidam M (1992) The insecticidal crystal protein CryIA(c) from Bacillus thuringiensis is highly toxic for Heliothis armigera. J. Invertebr. Pathol. 59, 109–111

    Article  PubMed  CAS  Google Scholar 

  39. Rishikesh N & G. Q (1983) Introduction à une méthode normalisée pour l’evaluation de l’activité des produits à base de Bacillus thuringiensis, serotype. J. Mond. Santé 61, 99–103

    Google Scholar 

  40. Salama HS, Foda MS & Sharaby A (1989) A proposed new Bacillus thuringiensis standard for bioassay of bacterial insecticides versus Spodoptora spp. Trop. Pest Management 35, 326–30

    Article  Google Scholar 

  41. Sandler N, Zomper R, Keynan A & Margalit J (1985) Bacillus thuringiensis var. israelensis crystal hemolysis as a possible basis for an assay of larval toxicity. Appl. Microbiol. Biotechnol. 23, 47–53

    Google Scholar 

  42. Sasaki J, Asano S, Iizuka T et al (1996) Insecticidal activity of the protein encoded by the Cry V gene of Bacillus thuringinsis kurstaki NA-02. Curr. Microbiol. 32, 195–200

    Article  PubMed  CAS  Google Scholar 

  43. Sidén I, Dalhammar G, Telander B, Boman HG & Somerville H (1979) Virulence factors in Bacillus thuringiensis: purification and properties of a protein inhibitor of immunity in insects. J. Gen. Microbiol. 114, 45–52

    Article  PubMed  Google Scholar 

  44. Skovmand O (1992) Trichoplusia ni for QC assays — QC of the test strain, method developments and laboratory safety, Abstract in Symposium on “Insect Behaviour - its influence on the development of insect rearing technology for research and pest management”, X IX International Congress of Entomology, Beijing, China

    Google Scholar 

  45. Skovmand O, Hoegh D, Pedersen HS & Rasmussen T (1997) Parameters influencing the potency of Bacillus thuringiensis var israelensis products. J. Econ. Entomol. 90, 361–369

    PubMed  CAS  Google Scholar 

  46. Skovmand O & Sterndorff HB (1994) Comparison of bioassays and photo immun assays on Bacillus thuringiensis var. kurstaki products. In Proc. VIth Int. Colloquium on Invertebrate Patholology and Microbial Control, Montpellier, France 2, 58–59

    Google Scholar 

  47. Skovmand O, Thiéry I, Benzon G et al. (1998) Potency of products based on Bacillus thuringiensis var. israelensis: inter laboratory variations. J. Am. Mosq. Control Assoc. 14, 298–304

    PubMed  CAS  Google Scholar 

  48. Smith RA & Ulrich JT (1983) Enzyme-linked immunosorbent assay for quantitative detection of Bacillus thuringiensis crystal protein. Appl. Environm. Microbiol. 45, 586–590

    CAS  Google Scholar 

  49. Tabashnik BE, Finson N, Johnson MW & Moar WJ (1993) Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera, Plutellidae). Appl. Environ. Microbiol. 59, 1332–1335

    PubMed  CAS  Google Scholar 

  50. Thiéry I, Baldet T, Barbazan P et al. (1997) International indoor and outdoor evaluation of Bacillus sphaericus products: complexity of standardizing outdoor protocols. J. Am. Mosq. Control Assoc. 13, 218–226

    PubMed  Google Scholar 

  51. Thiéry I & Hamon S (1998) Bacterial control of mosquito larvae: investigation of stability of B. t. i. and B. sphaericus standard powders. J. Am. Mosq. Control Ass. 14, 472–476

    Google Scholar 

  52. Tompkins G, Engler R, Mendelsohn M & Hutton P (1990) Historical aspects of the quantification of the active ingredient percentage for Bacillus thuringiensis products, p. 9–13. In: Hickle LA & Fitch WL (ed.), Analytical Chemistry of Bacillus thuringiensis, American Chemical Society, Washington DC

    Google Scholar 

  53. Van Beek NAM & Hughes PR (1986) Determination by fluorescence spectroscopy of the volume ingested by neonate lepidopterous larvae. J. Invertebr. Pathol. 48, 249–251

    Article  Google Scholar 

  54. Visser B, Munsterman E, Stoker A & Dirkse WG (1990) A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172, 6783–6788

    PubMed  CAS  Google Scholar 

  55. Visser B, Van der Salm T, Van den Brink W & Folkers G (1988) Genes from Bacillus thuringiensis entomocidus 60.5 coding for insect-specific crystal proteins. Mol. Gen. Genet. 212, 219–224

    Article  CAS  Google Scholar 

  56. Von Tersch MA, Robbins HL, Jany CS & Johnson TB (1991) Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki CryA(c) toxins. Appl. Environ. Microbiol. 57, 349–358

    Google Scholar 

  57. Wu D, Cao XL, Bay YY & Aronson AI (1991) Sequence of an operon containing a novel S-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol. Lett. 81, 31–36

    CAS  Google Scholar 

  58. Zhang MY, Lövgren A, Low MG & Landen R (1993) Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun. 61, 4947–4954

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skovmand, O., Thiéry, I., Benzon, G. (2000). Is Bacillus thuringiensis standardisation still possible?. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics