Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 99))

  • 211 Accesses

Abstract

Providing electronic replacement for human visual functions is a complex problem with unanswered questions in many areas of science and technology as well as rehabilitation. The general problem and tentative lines of solution have been studied since the beginning of the century: an electronic spatial sensor was developed by 1897 (14) and technology for both a spatial sensor and a reading machine was developed by Fournier d’Albe between 1912 and 1920 (10,22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, J. (1973). Summary report of the research pro-grams on electronic mobility aids. Report, Psychology Department, University of Nottingham.

    Google Scholar 

  2. Bach-y-Rita, P., Collins, C. C., Saunders, F., White, B., & Scadden, L. (1969). Vision substitution by tactile image projection. Nature, 221, 963–964.

    CAS  Google Scholar 

  3. Ballard, D. H. & Brown, C. M. (1972). Computer Vision. New Jersey: Prentice-Hall.

    Google Scholar 

  4. Brabyn, J. A. (1978). Laboratory Studies of Aided Blind Mobility. Ph.D. Thesis: University of Canterbury.

    Google Scholar 

  5. Brabyn, J. A., Collins, C. C., & Kay, L. (1981). A wide- band CTFM scanning sonar with tactile and acoustic display for persons with impaired vision (blind, diver, etc.). Proceedings of the Ultrasonic International Conference, Brighton, England.

    Google Scholar 

  6. Brabyn, J. A. & Strelow, E. R. (1977). Computer-analyzed measures of characteristics of human locomotion and mobility. Behavior Research Methods and Instrumentation, 9, 456–462.

    Article  Google Scholar 

  7. Collins, C. C., Scadden, L. A., & Alden, A. B. (1977). Mobility studies with a tactile imaging device. Conference on Systems and Devices for the Disabled, Seattle.

    Google Scholar 

  8. Deering, M. F. (1982). Real time natural scene analysis for a blind prosthesis. Fairchild Technical Report #622.

    Google Scholar 

  9. Easton, R. D. & Jackson, R. M. (1983). Pilot test of the trisensor, a new generation sonar sensory aid. Journal of Visual Impairment & Blindness, 77, 446–449.

    Google Scholar 

  10. Fournier d’Albe, E. E. F. (1920). The optophone: An instrument for reading by ear. Nature, 105, 295–297.

    Google Scholar 

  11. Freiburger, A. M. (1967). Fabrication of obstacle detectors for the blind. Bulletin of Prosthetics Research, 10, 8.

    Google Scholar 

  12. Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton-Mifflin.

    Google Scholar 

  13. Guarniero, G. (1974). Experience of tactile vision. Perception, 3, 101–104.

    Article  PubMed  CAS  Google Scholar 

  14. Jansson, G. (1978). Human locomotion guided by a matrix of tactile point stimuli. In G. Gordon (Ed.), Active Touch. Oxford: Pergamon Press.

    Google Scholar 

  15. Kay, L. (1964). An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics, April-June, 106–114.

    Google Scholar 

  16. Kay, L. (1974). A sonar aid to enhance spatial perception of the blind: Engineering design and evaluation. The Radio and Electronic Engineer.

    Google Scholar 

  17. Kay, L. (1982). Spatial perception through an acoustic sensor. Report, University of Canterbury.

    Google Scholar 

  18. Kay, L., Bui, S. T., Brabyn, J. A., & Strelow, E. R. (1976). Single object sensor: A simplified binaural mobility aid. Journal of Visual Impairment & Blindness, 70, 22–24.

    Google Scholar 

  19. Maure, D. R., Mellor, C. M., & Uslan, M. (1979). AFB’s computerized travel aid: Experimenters wanted. Journal of Impairment & Blindness, 73, 380–381.

    Google Scholar 

  20. Michaels, C. F. & Carello, C. A. (1982). Direct Perception. New York: Appleton Century Crofts.

    Google Scholar 

  21. Moravec, H. P. (1982). Robot Rover: Visual Navigation. Ann Arbor: UMI Research Press.

    Google Scholar 

  22. Nye, P. W. & Bliss, J. C. (1970). Sensory aids for the blind: A challenging problem with lessons for the future. Proceedings, Institute of Electrical and Electronic Engineers, V58, 12, 1878–1898.

    Google Scholar 

  23. Pressey, N. (1977). Mowat Sensor. Focus, 11, 35–39.

    Google Scholar 

  24. Russell, L. (1965). Travel path sounder. Proceedings, Rotterdam Mobility Research Conference. New York: American Foundation for the Blind.

    Google Scholar 

  25. Strelow, E. R. (1982). Sensory aids: Commercial versus research interests. Journal of Visual Impairment & Blind-ness, 76, 241–243.

    Google Scholar 

  26. Strelow, E. R. (1985). What is needed for a theory of mobility: Direct perception and cognitive maps: Some lessons from the blind. Psychological Review, 92, 226–248.

    CAS  Google Scholar 

  27. Strelow, E. R. & Boys, J. T. (1979). The Canterbury child’s aid: A binaural spatial sensor for research with blind children. Journal of Visual Impairment & Blindness, 73, 179–184.

    Google Scholar 

  28. Strelow, E. R. & Brabyn, J. A. (1981). Use of foreground and background information in visually guided locomotion. Perception, 10, 191–198.

    CAS  Google Scholar 

  29. Strelow, E. R. & Brabyn, J. A. (1982). Use of natural sound cues by the blind to control locomotion. Perception, 11, 635–640.

    CAS  Google Scholar 

  30. Strelow, E. R. & Brabyn, J. A., & Clark, G. R. S. (1976). Apparatus for measuring and recording path velocity and direction characteristics of human locomotion. Behavior Research Methods and Instrumentation, 8, 442–446.

    Google Scholar 

  31. Valvo, A. (1971). Sight Restoration After Long-term Blindness: The Problems and Behavior Patterns of Visual Rehabilitation. New York: American Foundation for the Blind.

    Google Scholar 

  32. Warren, D. H. & Strelow, E. R. (1984). Learning spatial dimensions with a visual sensory aid: Molyneux revisited. Perception, 13, 331–350.

    CAS  Google Scholar 

  33. White, B., Saunders, F. A., Scadden, L. A., Bach-y-Rita, P., & Collins, C. C. (1970). Seeing with the skin. Perception & Psychophysics, 7, 23–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Warren, D.H., Strelow, E.R. (1985). Historical Overview. In: Warren, D.H., Strelow, E.R. (eds) Electronic Spatial Sensing for the Blind. NATO ASI Series, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1400-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1400-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8293-0

  • Online ISBN: 978-94-017-1400-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics