Skip to main content

A functional approach to ecomorphological patterns of feeding in cottid fishes

  • Chapter

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 16))

Synopsis

One of the major goals of an ecomorphological analysis is to correlate patterns of interspecific differences in morphology with patterns of interspecific differences in ecology. Information derived from functional morphological studies may provide a mechanistic framework supporting the correlation, but the move from a correlational relationship to a causal relationship requires experimental evidence that the interspecific morphological differences create performance differences and therefore ecological differences. The goal of this study was to examine ecomorphological relationships in the diets of cottid fishes (Scorpaeniformes: Cottidae) from the northeastern Pacific by using functional classifications of predators (based on their mode of attack) and of prey (based on their anti-predator defenses). The proposed ecomorphological relationships were tested by examining capture success among the cottids in attacks on prey with different escape abilities. As predicted on functional morphological grounds, both multivariate and univariate analyses indicated that the gravimetric importance of ‘elusive prey’ (i.e. fishes, shrimp, mysids, and octopods) was greater in cottid species with a larger relative mouth size. Supporting a causal link between morphology and ecology, performance tests indicated that larger-mouthed cottids had significantly higher capture success on Heptacarpus shrimp than did smaller-mouthed species. As predicted, there were no differences in capture success among predators regardless of their attack style or ecomorphological patterns in attack on crabs (Cancer and Petrolisthes spp.) when the crabs were presented on a sand surface (i.e. ‘easy prey’). Several difficulties still exist when trying to apply a functional group approach to ecomorphology. These include the behavioral plasticity of the predators, the confounding factor of evolutionary history in identifying correlated ecomorphological features, multiple morphological solutions to common functional problems, the limitations of traditional dietary studies during extremes of prey abundance, and an inadequate understanding of the anti-predator defenses of most prey, including modifications that occur during ontogeny or in different habitats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Alexander, R.McN. 1967. The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fish. J. Zool. Lond. 151: 43–64.

    Article  Google Scholar 

  • Alexander, R.McN. 1970. Mechanics of the feeding action of various teleost fishes. J. Zool. Lond. 162: 145–156.

    Article  Google Scholar 

  • Barel, C.D.N. 1983. Towards a constructional morphology of cichlid fishes ( Teleostei, Perciformes). Neth. J. Zool. 33: 357–424.

    Article  Google Scholar 

  • Bentzen, P. & J.D. McPhail. 1984. Ecology and evolution of sympatrie sticklebacks (Gasterosteus): specialization for alternative trophic niches in the Enos Lake species pair. Can. J. Zool. 62: 2280–2286.

    Article  Google Scholar 

  • Casinos, A. 1978. The comparative feeding mechanisms of Gadidae and Macrouridae. Gegenbaurs morphologisches Jahrbuch 124: 434–449.

    PubMed  CAS  Google Scholar 

  • Chadwick, E.M. 1976. A comparison of growth and abundance for tidal pool fishes in California and British Columbia. J. Fish Biol. 8: 27–34.

    Article  Google Scholar 

  • Chao, L.N. & J.A. Musick. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River Estuary, Virginia. U.S. Fish. Bull. 75: 657–702.

    Google Scholar 

  • Cooper, S.D., D.W. Smith & J.R. Bence. 1985. Prey selection by freshwater predators with different foraging strategies. Can. J. Fish. Aquat. Sci. 42: 1720–1732.

    Google Scholar 

  • Coughlin, D.J. & J.R. Strickler. 1990. Zooplankton capture by a coral reef fish: an adaptive response to evasive prey. Env. Biol. Fish. 29: 35–42.

    Article  Google Scholar 

  • Cross, J.N. 1981. Structure of a rocky intertidal fish assemblage. Ph.D. Thesis, University of Washington, Seattle. 258 pp..

    Google Scholar 

  • Daniel, T.L. & E. Meyerhofer. 1989. Size limits in escape locomotion of carridean shrimp. J. Exp. Biol. 143: 245–265.

    Google Scholar 

  • Davis, W.P. & R.S. Birdsong. 1973. Coral reef fishes which forage in the water column. Helgol. Wiss. Meerunters. 24: 292–306.

    Article  Google Scholar 

  • de Groot, S.J. 1969. Digestive system and sensorial factors in relation to the feeding behavior of flatfishes (Pleuronectiformes). J. Const. int. Explor. Mer. 32: 385–395.

    Google Scholar 

  • De Martini, E.E. 1969. A correlative study of the ecology and comparative feeding mechanism morphology of the Embiotocidae (surf-fishes) as evidence of the family’s adaptive radiation into available ecological niches. Wasmann Journal of Biology 27: 177–245.

    Google Scholar 

  • Demetropoulos, C.L., L.F. Braithwaite, B.A. Maurer & D. Whiting. 1990. Foraging and dietary strategies of two sublittoral cottids, Jordania zonope and Artedius harringtoni. J. Fish Biol. 37: 19–32.

    Google Scholar 

  • De Silva, S.S., P.R.T. Cumaranatunga & C.D. De Silva. 1980. Food, feeding ecology and morphological features associated with feeding of four co-occurring cyprinids ( Pisces: Cyprinidae). Neth. J. Zool. 30: 54–73.

    Article  Google Scholar 

  • Douglas, M.E. & W.J. Matthews. 1992. Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65: 231–224.

    Google Scholar 

  • Drenner, R.W., J.R. Strickler & W.J. O’Brien. 1978. Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Res. Board Can. 35: 1370–1373.

    Google Scholar 

  • Drost, M.R., J.W.M. Osse & M. Muller. 1988. Prey capture by fish larvae, water flow patterns and the effect of escape movement of prey. Neth. J. Zool. 38: 23–45.

    Google Scholar 

  • Ebeling, A.W. & G.M. Cailliet. 1974. Mouth size and predator strategy in midwater fishes. Deep-Sea Research 21: 959–968.

    Google Scholar 

  • Elshoud-Oldenhave, M.J.W. & J. Osse. 1976. Functional morphology of the feeding system of the ruff - Gymnocephalus cernua (L. 1758 ) -Teleostei, Percidae). J. Morph. 150: 399–422.

    Google Scholar 

  • Emery, A.R. 1973. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23: 649–770.

    Google Scholar 

  • Freeman, M.C., N. Neatly & G.D. Grossman. 1985. Aspects of the life history of the fluffy sculpin, Oligocottus snyderi. U.S. Fish. Bull. 83: 654–655.

    Google Scholar 

  • Gatz, A.J. Jr. 1979a. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.

    Article  Google Scholar 

  • Gatz, A.J. Jr. 1979b. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Grant, P.R. 1986. Ecology and evolution of Darwin’s finches. Princeton University Press, Princeton. 472 pp.

    Google Scholar 

  • Grobecker, D.B. & T.W. Pietsch. 1979. High-speed cinematographic evidence for ultrafast feeding in antennariid anglerfishes. Science 205: 1161–1162.

    Google Scholar 

  • Grossman, G.D. 1982. Dynamics and organization of a rocky intertidal fish assemblage: the persistence and resilience of taxocene structure. Amer. Nat. 119: 611–637.

    Article  Google Scholar 

  • Grossman, G.D. 1986. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool. Lond. 1: 317–355.

    Article  Google Scholar 

  • Kaiser, M.J., A.P. Westhead, R.N. Hughes & R.N. Gibson. 1992. Are digestive characteristics important contributors to the profitability of prey? Oecologia 90: 61–69.

    Article  Google Scholar 

  • Keast, A. 1978. Trophic and spatial interrelationships in the fish species of an Ontario temperate lake. Env. Biol. Fish. 3: 7–31.

    Article  Google Scholar 

  • Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Board Can. 23: 1845–1874.

    Article  Google Scholar 

  • Lauder, G.V. 1983a. Neuromuscular patterns and the origin of trophic specialization in fishes. Science 219: 1235–1237.

    Article  PubMed  CAS  Google Scholar 

  • Lauder, G.V. 1983b. Prey capture hydrodynamics in fishes: experimental tests of two models. J. Exp. Biol. 104: 1–13.

    Google Scholar 

  • Lauder, G.V. 1983e. Functional and morphological bases of trophic specialization in sunfishes ( Teleostei, Centrarchidae). J. Morph. 178: 1–21.

    Article  Google Scholar 

  • Lauder. G.V. & B.D. Clark. 1984. Water flow patterns during prey capture by teleost fishes. J. Exp. Biol. 113: 143–150.

    Google Scholar 

  • Lauder, G.V. & K.E Liem. 1981. Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes. Env. Biol. Fish. 6: 257–268.

    Google Scholar 

  • Lauder, G.V. & S.F. Norton. 1980. Asymmetrical muscle activity during feeding in the gar, Lepisosteus oculatus. J. Exp. Biol. 84: 17–32.

    Google Scholar 

  • van Leeuwen, J.L. 1984. A quantitative study of flow in prey capture by rainbow trout, Salmo gairdneri with general consideration of the actinopterygian feeding mechanism. Trans. Zool. Soc. Lond. 37: 171–227.

    Article  Google Scholar 

  • van Leeuwen, J.L. & M. Muller. 1984. Optimum sucking techniques for predatory fish. Trans. Zool. Soc. Lond. 37: 137–169.

    Google Scholar 

  • Liem, K.F. 1978. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes. Part I: Piscivores. J. Morph. 158: 323–360.

    Article  Google Scholar 

  • Liem, K.F. 1979. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes. The invertebrate pickers of Lake Tanganyika. J. Zool. Lond. 189: 93–125.

    Article  Google Scholar 

  • Liem, K.F. 1980a. Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20: 295–314.

    Google Scholar 

  • Liem, K.F. 1980b. Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. pp. 299–334. In: M.A. Ali (ed.) Environmental Physiology of Fishes, Plenum Publishing Corporation, New York.

    Google Scholar 

  • Liem, K.F. & S.L. Sanderson. 1986. The pharyngeal jaw apparatus of labrid fishes: a functional morphological perspective. J. Morph. 187: 143–158.

    Article  Google Scholar 

  • Luczkovich, J.J. & E.J. Stellwag. 1993. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Mar. Biol. 116: 381–388.

    Google Scholar 

  • McComas, S.R. & R. W. Drenner. 1982. Species replacement in a reservoir fish community: silverside feeding mechanics and competition. Can. J. Fish. Aquat. Sci. 39: 815–821.

    Google Scholar 

  • McLellan, T. 1977. Feeding strategies of the macrourids. Deep-Sea Research 24: 1019–1036.

    Article  Google Scholar 

  • Mitchell, D.E 1953. An analysis of stomach contents of California tide pool fishes. Amer. Midl. Nat. 49: 862–871.

    Article  Google Scholar 

  • Mittelbach, G.G., C.W. Osenberg & P.C. Wainwright. 1992. Variation in resource abundance affects diet and feeding morphology in the pumkinseed sunfish (Lepomis gibbosus). Oecologia 90: 8–13.

    Google Scholar 

  • Mollick, R.S. 1970. Food habits of Clinocottus analis ( Girard ). California Fish and Game 65: 133–134.

    Google Scholar 

  • Moody, R.C., J.H. Helland & R.A. Stein. 1983. Escape tactics used by bluegills and fathead minnows to avoid predation by tiger muskellunge. Env. Biol. Fish. 8: 61–65.

    Google Scholar 

  • Motta, P.J. 1988. Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Env. Biol. Fish. 22: 39–67.

    Article  Google Scholar 

  • Motta, P.J., S.F. Norton & J.J. Luczkovich. 1995. Perspectives on the ecomorphology of bony fishes. Env. Biol. Fish. 44: 11–20.

    Google Scholar 

  • Moulton, L.L. 1977. An ecological analysis of fishes inhabiting the rocky nearshore regions of northern Puget Sound, Washington. Ph.D. Dissertation, University of Washington, Seattle. 182 pp.

    Google Scholar 

  • Muller, M. & J.W.M. Osse. 1984. Hydrodynamics of suction feeding in fish. Trans. Zool. Soc. Lond. 37: 51–135.

    Google Scholar 

  • Nakamura, R. 1971. Food of two cohabiting tidepool Cottidac. J. Fish. Res. Board Can. 28: 928–932.

    Article  Google Scholar 

  • Norton, S.F. 1988. The role of the gastropod shell and operculum in inhibiting predation by fishes. Science 241: 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Norton, S.F. 1989. Constraints on the foraging ecology of subtidal cottid fishes. Ph.D. Dissertation, University of California, Santa Barbara. 254 pp.

    Google Scholar 

  • Norton, S.F. 1991a. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.

    Article  Google Scholar 

  • Norton, S.F. 1991b. Habitat use and community structure in an assemblage of cottid fishes. Ecology 72: 2181–2192.

    Article  Google Scholar 

  • Norton, S.F. & E.L. Brainerd. 1993. Convergence in the feeding mechanics of ecomorphologically similar species in the centrarchidae and cichlidae. J. exp. Biol. 176: 11–29.

    Google Scholar 

  • Ogden, J.C. & P.S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Env. Biol. Fish. 3: 49–63.

    Google Scholar 

  • Osse, J.W.M. 1969. Functional anatomy of the head of the perch (Perca fluviatilis L.); an electromyographic study. Neth. J. Zool. 19: 289–392.

    Article  Google Scholar 

  • Page, L.M. & D.L. Swofford. 1984. Morphological correlates of ecological specialization in darters. Env. Biol. Fish. 11: 139–159.

    Article  Google Scholar 

  • Palmer, A.R. 1976. Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33: 697–713.

    Article  Google Scholar 

  • Peden, A.E. & D.E. Wilson. 1976. Distribution of intertidal and subtidal fishes of northern British Columbia and southeastern Alaska. Syesis 9: 221–248.

    Google Scholar 

  • Sanderson, S.L. 1988. Variation in neuromuscular activity during prey capture by trophic specialists and generalists (Pisces: Labridae). Brain, Beh. & Evol. 32: 257–268.

    Article  CAS  Google Scholar 

  • Sanderson, S.L. 1990. Versatility and specialization in labrid fishes: ecomorphological implications. Oecologia 84: 272–279.

    Google Scholar 

  • Stebbins, T.D. 1988. The role of sea urchins in mediating fish predation on a commensal isopod ( Crustacea: Isopods). J. Exp. Mar. Biol. Ecol. 124: 97–113.

    Article  Google Scholar 

  • Strauss, R.E. & L.A. Fuiman. 1985. Quantitative comparisons of body form and allometry in larval and adult Pacific sculpins ( Teleostei: Cottidae). Can. J. Zool. 63: 1582–1589.

    Google Scholar 

  • Vermeij, G.J. 1982. Unsuccessful predation and evolution. Amer. Nat. 120: 701–720.

    Article  Google Scholar 

  • Vinyard, G.L. 1982. Variable kinematics of Sacramento perch (Archoplites interruptus) capturing evasive and nonevasive prey. Can. J. Fish. Aquat. Sci. 39: 208–211.

    Article  Google Scholar 

  • Wainwright, P.C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69: 635–645.

    Article  Google Scholar 

  • Wainwright, P.C. & G.V. Lauder. 1986. Feeding biology of sun-fishes: patterns of variation in the feeding mechanism. Zool. J. Linn. Soc. 88: 217–228.

    Google Scholar 

  • Wainwright, P.C. & B.A. Richard. 1995. Predicting patterns of prey use from morphology with fishes. Env. Biol. Fish. 44: 97–113.

    Article  Google Scholar 

  • Webb, P.W. 1979. Mechanics of escape responses in crayfish (Oronectes virilis). J. Exp. Biol. 79: 245–263.

    Google Scholar 

  • Webb, P.W. 1982. Avoidance response of fathead minnows to strikes by four teleost predators. J. Comp. Phys. 147: 371–378.

    Article  Google Scholar 

  • Webb, P.W. 1984a. Body form, locomotion, and foraging in aq-uatic vertebrates. Amer. Zool. 24: 107–120.

    Google Scholar 

  • Webb, P.W. 1984b. Body and fin form and strike tactics of four teleost predators attacking fathead minnow (Pirvephales promelas) prey. Can. J. Fish. Aquat. Sci. 41: 157–165.

    Google Scholar 

  • Webb, P.W. 1988. Simple physical principles and vertebrate locomotion. Amer. Zool. 28: 709–725.

    Google Scholar 

  • Webb, P.W. & J.M. Skadsen. 1980. Strike tactics of Esox. Can. J. Zool. 58: 1462–1469.

    Google Scholar 

  • Wells, A.W. 1986. Aspects of the ecology and life history of the wooly sculpin, Clinocottus analis, from southern California. California Fish and Game 72: 213–226.

    Google Scholar 

  • Westneat, M.W. 1990. Feeding mechanics of teleost fishes (La-bridae; Perciformes): a test of four-bar linkage models. J. Morph. 205: 269–295.

    Article  Google Scholar 

  • Westneat, M.W. & P.C. Wainwright. 1989. Feeding mechanism of Epibulus insideator (Labridae; Teleostei): evolution of a novel functional system. J. Morph. 202: 129–150.

    Article  Google Scholar 

  • Wiens, J.A. 1977. On competition and variable environments. American Scientist 65: 590–597.

    Google Scholar 

  • Wiens, J.A. & J.T. Rotenberry. 1980. Patterns of morphology and ecology in grassland and shrubsteppe bird populations. Ecol. Monogr. 50: 287–308.

    Google Scholar 

  • Winemiller, K.O. 1991. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol. Monogr. 61: 343–365.

    Article  Google Scholar 

  • Yoshiyama, R.M. 1980. Food habits of three species of rocky intertidal sculpins ( Cottidae) in central California. Copeia 1980: 515–525.

    Google Scholar 

  • Yoshiyama, R.M. 1981. Distribution and abundance patterns of rocky intertidal fishes in central California. Env. Biol. Fish. 6: 315–332.

    Article  Google Scholar 

  • Yoshiyama, R.M., C. Sassman & R.N. Lea. 1986. Rocky intertidal fish communities in California: temporal and spatial variation. Env. Biol. Fish. 17: 23–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph J. Luczkovich Philip J. Motta Stephen F. Norton Karel F. Liem

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norton, S.F. (1995). A functional approach to ecomorphological patterns of feeding in cottid fishes. In: Luczkovich, J.J., Motta, P.J., Norton, S.F., Liem, K.F. (eds) Ecomorphology of fishes. Developments in environmental biology of fishes, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1356-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1356-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4620-8

  • Online ISBN: 978-94-017-1356-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics