Skip to main content

Time and tide wait for no fish: intertidal fishes out of water

  • Chapter
Ecomorphology of fishes

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 16))

Synopsis

Hypoxic conditions are rare in the open ocean, but may occur during low tides in tidepools. Intertidal fishes respond to low tides in a variety of ways, including avoiding the intertidal zone during low tides, respiring in the well-oxygenated layer at the surface of the water, or simply tolerating hypoxic water. A number of intertidal fish species have the ability to leave the water and survive terrestrially for a period of time while breathing air. This paper reviews the literature on ecomorphology of amphibious intertidal fishes, suggests ecomorphological and ecophysiological approaches to clarifying the adaptations of intertidal fishes for emergence from water, and considers differences in the types of emergence behavior and activities seen in three broadly defined behavioral types. These types include the ‘skippers’, fishes that actively emerge at all phases of the tidal cycle and engage in routine terrestrial activity, the ‘remainers’, that emerge passively under cover such as rocks or vegetation by remaining in place as the tide recedes, and the ‘tidepool emergers’, that typically spend low tides in tidepools but may emerge from hypoxic water. Portioning of gas exchange between the gills and the skin, the release of CO2, into air, the effect of emergence on metabolic rate, and vertical zonation in distribution of fishes in the intertidal zone are compared for fishes in each of these behavioral styles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Abel, E.F. von. 1973. Zur Öko-Ethologie des amphibisch lebenden Fisches Alticus saliens (Forster) and von Entomacrodus vermiculatus (Val.) (Blenniodea, Salariidae), unter besonderer Berücksichtigung des Fortpflanzungsverhaltens. Sitzber. Österr. Akad. Wiss., Abt. I, 181: 137–153.

    Google Scholar 

  • Al-Khadomiy, N.K. and G.M. Hughes. 1988. Histological study of different regions of the skin and gills in the mudskipper, Boleophthalmus boddaerti, with respect to their respiratory function. J. Mar. Biol. Assoc. U.K. 68: 413–422.

    Google Scholar 

  • Bandurski, R.S., E. Bradstreet and P.F. Scholander. 1968. Metabolic changes in the mud-skipper during asphyxia or exercise. Comp. Biochem. Physiol. 24: 271–274.

    Google Scholar 

  • Barlow, G.W. 1961. Intra-and interspecific differences in rate of oxygen consumption in gobiid fishes of the genus Gillichthys. Biol. Bull. 121: 209–229.

    Google Scholar 

  • Bartholomew G.A. 1982. Energy metabolism. In: M.S. Gordon (ed.) Animal Physiology, Principles and Adaptations, 4th ed., Macmillan Press, New York. pp 46–93.

    Google Scholar 

  • Barton, M. 1985. Response of two species of amphibious stichaeoid fishes to temperature fluctuations in an intertidal habitat. Hydrobiologia 120: 151–157.

    Article  Google Scholar 

  • Bennett, A.F. 1978. Activity metabolism in lower vertebrates. Ann. Rev. Physiol. 40: 447–469.

    Google Scholar 

  • Berschick, P., C.R. Bridges and M.K. Grieshaber. 1987. The influence of hyperoxia, hypoxia, and temperature on the respiratory physiology of the intertidal rockpool fish Gobius cobitis Pallas. J. Exp. Biol. 130: 369–387.

    Google Scholar 

  • Bond, C.E. 1979. Biology of fishes. Saunders College Publishing, Philadelphia. 514 pp.

    Google Scholar 

  • Boutilier, R.G. and G. Shelton. 1986. Gas exchange, storage, and transport in voluntarily diving Xenopus laevis. J. Exp. Biol. 126: 133–155.

    Google Scholar 

  • Bridges, C.R. 1986. Environmental extremes - the respiratory physiology of intertidal rockpool fish and sublittoral burrowing fish. Zool. Beitr. N.F. 30: 65–84.

    Google Scholar 

  • Bridges, C.R. 1988. Respiratory adaptations in intertidal fish. Amer. Zool. 29: 79–96.

    Google Scholar 

  • Brillet, C. 1980a. The courtship of the mudskipper Periophthalmus sobrinus and its relationship with agonistic behavior. Terre Vie 34: 427–468.

    Google Scholar 

  • Brillet, C. 1980b. Agonistic behavior of an amphibious fish Periophthalmus sobrinus. Biol. Behay. 5: 297–316.

    Google Scholar 

  • Brown, C.R., M.S. Gordon and K.L.M. Martin. 1992. Aerial and aquatic oxygen uptake in the amphibious Red Sea rockskipper fish, Alticus kirki ( Family Blenniidae ). Copeia 1992: 1007–1013.

    Google Scholar 

  • Burggren, W.W. and S. Haswell. 1979. Aerial CO, excretion in the obligate air breathing fish Trichogaster trichopterus: a role for carbonic anhydrase. J. Exp. Biol. 82: 215–225.

    Google Scholar 

  • Carter, G.S. 1957. Air breathing. pp. 65–79. In: M.E. Brown (ed.) The Physiology of Fishes, Academic Press, New York.

    Google Scholar 

  • Congleton, J.L. 1974. The respiratory response to asphyxia of Typhlogobius californiensis ( Teleostei: Gobiidae) and some related gobies. Biol. Bull. 146: 186–205.

    Google Scholar 

  • Congelton, J.L. 1980. Observations on the responses of some southern California tidepool fishes to nocturnal hypoxie stress. Comp. Biochem. Physiol. 66A: 719–722.

    Google Scholar 

  • Crane, J.M. Jr. 1981. Feeding and growth by the sessile larvae of the teleost Porichthys notatus. Copeia 1981: 895–897.

    Article  Google Scholar 

  • Cross, J.N. 1981. Structure of a rocky intertidal fish assemblage. Ph.D. Dissertation, University of Washington, Seattle. 255 pp.

    Google Scholar 

  • Das, B.K. 1934. The habits and structure of Pseudapocryptes Ianceolatus, a fish in the first stage of structural adaptation to aerial respiration. Proc. Roy. Soc. 115B: 422–430.

    Google Scholar 

  • Davenport, J. and A.D. Woolmington. 1981. Behavioural responses of some rocky shore fish exposed to adverse environmental conditions. Mar. Behay. Physiol. 8: 1–12.

    Google Scholar 

  • Daxboeck, C. and T.A. Heming. 1982. Bimodal respiration in the intertidal fish, Xiphister atropurpureus (Kittlitz). Mar. Behay. Physiol. 9: 23–33.

    Google Scholar 

  • Dejours, R 1981. Principles of comparative respiratory physiology, 2nd ed. North Holland, Amsterdam. 253 pp.

    Google Scholar 

  • DeMartini, E.E. 1988. Spawning success of the male plainfin midshipman. I. Influences of male body size and area of spawning site. J. Exp. Mar. Biol. Ecol. 121: 177–192.

    Article  Google Scholar 

  • Doty, M.S. 1946. Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific coast. Ecology 27: 315–328.

    Article  Google Scholar 

  • Duellman, W.E. and L. Trueb. 1986. Biology of amphibians. McGraw Hill, New York. 670 pp.

    Google Scholar 

  • Ebeling, A.W., P. Bernal and A. Zuleta. 1970. Emersion of the amphibious Chilean clingfish Sicyases sanguineus. Biol. Bull. 139: 115–137.

    Google Scholar 

  • Edwards, D.G. and J.J. Cech Jr. 1990. Aquatic and aerial metabolism of juvenile monkeyface prickleback, Cebidichthys violaceus, an intertidal fish of California. Comp. Biochem. Physiol. 96A: 61–65.

    Google Scholar 

  • Eger, W.H. 1971. Ecological and physiological adaptations of intertidal clingfishes (Teleostei: Gobiesocidae) in the northern Gulf of California. Ph.D. Dissertation, University of Arizona, Flagstaff. 210 pp.

    Google Scholar 

  • Feder, M.E. and W.W. Burggren. 1985. Cutaneous gas exchange in vertebrates: design, patterns, control, and implications. Biol. Rev. 60: 1–45.

    Google Scholar 

  • Gibson, R.N. 1982. Recent studies on the biology of intertidal fishes. Oceanogr. Mar. Biol. Ann. Rev. 20: 363–414.

    Google Scholar 

  • Gibson, R.N. 1986. Intertidal teleosts: life in a fluctuating envi-ronment. In: T.J. Pitcher (ed.) The Behavior of Teleost Fishes, Johns Hopkins University Press, Baltimore. pp. 388–408.

    Chapter  Google Scholar 

  • Gordon, M.S., J. Boetius, D.H. Evans and L.C. Oglesby. 1968. Additional observations on the natural history of the mudskipper, Periophthalmus sobrinus. Copeia 1968: 853–857.

    Article  Google Scholar 

  • Gordon, M.S., I. Boetius, D.H. Evans, R. McCarthy and L.C. Oglesby. 1969. Aspects of the physiology of terrestrial life in amphibious fishes. I. The mudskipper, Periophthalmus sobri-nus. J. Exp. Biol. 50: 141–149.

    Google Scholar 

  • Gordon, M.S., S. Fischer and E. Tarifeíïo. 1970. Aspects of the physiology of terrestrial life in amphibious fishes. II. The Chilean clingfish, Sicyases sanguineus. J. Exp. Biol. 53: 559–572.

    Google Scholar 

  • Gordon, M.S., W. W.-s. Ng and A.Y.-w. Yip. 1978. Aspects of the physiology of terrestrial life in amphibious fishes. III. The Chinese mudskipper Periophthalmus cantonensis. J. Exp. Biol. 72: 57–75.

    Google Scholar 

  • Graham, J.B. 1970. Preliminary studies on the biology of the amphibious clinid Mnierpes macrocephalus. Mar. Biol. 5: 136–140.

    Article  Google Scholar 

  • Graham, J.B. 1973. Terrestrial life of the amphibious fish Mnierpes macrocephalus. Marine Biology 23: 83–91.

    Article  Google Scholar 

  • Graham, J.B. 1976. Respiratory adaptations of marine air-breathing fishes. pp. 165–187. In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Graham, J.B., R.H. Rosenblatt and C. Gans. 1978. Vertebrate air breathing arose in fresh waters and not in the oceans. Evolution 32: 459–463.

    Google Scholar 

  • Graham, J.B., C.B. Jones and I. Rubinoff. 1985. Behavioural, physiological, and ecological aspects of the amphibious life of the pearl blenny Entomacrodus nigricans Gill. J. Exp. Mar. Biol. Ecol. 89: 255–268.

    Google Scholar 

  • Gray, I. 1954. Comparative study of the gill area of marine fishes. Biol. Bull. 107: 219–225.

    Google Scholar 

  • Guimond, R.W. and V.H. Hutchison. 1976. Gas exchange of the giant salamanders of North America. pp. 313–338. In:G.M. Hughes (ed) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Haddon, A.C. 1889. Zoological notes from Torres Straits. Caudal respiration in Periophthalmus. Nature 39: 285.

    Article  Google Scholar 

  • Hayes, LP., J.R. Speakman and P.A. Racey. 1992. Sampling bias in respirometry. Physiol. Zool. 65: 604–619.

    Google Scholar 

  • Hillman, S.S. and RC. Withers. 1987. Oxygen consumption during aerial activity in aquatic and amphibious fish. Copeia 1987: 232–234.

    Article  Google Scholar 

  • Horn, M.H. 1992. Herbivorous fishes: feeding and digestive mechanisms. pp. 339–362. In: D.M. John, S.J. Hawkins and J.H. Price (ed.) Plant-animal Interactions in the Marine Benthos, Systematics Association Special Volume 46, Clarendon Press, Oxford.

    Google Scholar 

  • Horn, M.H. and R.N. Gibson. 1988. Intertidal fishes. Scientific American 258: 64–70.

    Article  Google Scholar 

  • Horn, M.H. and K.C. Riegle. 1981. Evaporative water loss and intertidal vertical distribution in relation to body size and morphology of stichaeoid fishes from California. J. Exp. Mar. Biol. Ecol. 50: 273–288.

    Google Scholar 

  • Hughes, G.M. 1966. The dimensions of fish gills in relation to their function. J. Exp. Biol. 45: 177–195.

    Google Scholar 

  • Hughes, G.M. and N.K. Al-Khadomiy. 1986. Gill morphometry of the mudskipper, Boleophthalmus boddaerti. J. Mar. Biol. Assoc. U.K. 66: 671–682.

    Google Scholar 

  • Hughes, G.M. and M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • Iwata, K. 1988. Nitrogen metabolism in the mudskipper Periophthalmus cantonensis: changes in free amino acids and related compounds in various tissues under conditions of ammonia loading, with special reference to its high ammonia tolerance. Comp. Biochem. Physiol. 91A: 499–508.

    Article  CAS  Google Scholar 

  • Jager, S. de and W.J. Dekkers. 1975. Relations between gill structure and activity in fish. Neth. J. Zool. 25: 276–308.

    Google Scholar 

  • Johansen, K. 1970. Air breathing in fishes. pp. 361–411. In: W.S. Hoar and D.J. Randall (ed.) Fish Physiology, Vol. Academic Press, New York.

    Google Scholar 

  • Kormanik, G.A. and D.H. Evans. 1988. Nitrogenous waste excretion in the intertidal rock gunnel (Pholis gunnelus L.): the effects of emersion. Bull. Mt. Desert IsI. Biol. 27: 33–35.

    Google Scholar 

  • Kramer, D.L. 1983. The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Env. Biol. Fish. 9: 145–158.

    Google Scholar 

  • Laming, P.R., C.W. Funston, D. Roberts and M.J. Armstrong. 1982. Behavioural, physiological, and morphological adaptations of the shanny (Blennius pholis) to the intertidal habitat. J. Mar. Biol. Ass. U.K. 62: 329–338.

    Google Scholar 

  • Larson, H.K. 1983. Notes on the biology of the goby Kelloggella cardinalis ( Jordan and Seale ). Micronesica 19: 157–164.

    Google Scholar 

  • Leggett, W.C. and K.T. Frank. 1990. The spawning of the capelin. Scientific American (May) 1990: 102–107.

    Article  Google Scholar 

  • Louisy, P. 1987. Observations sur l’emersion nocturne de deux blennies Mediterranéennes: Coryphoblennius galerita et Blennius trigloides ( Pisces, Perciformes). Cybium 11: 55–73.

    Google Scholar 

  • Low, W.P., Y.K. Ip and D.J.W. Lane. 1988. A comparative study of terrestrial adaptations of the gills in three mudskippers - Periophthalmus chrysospilos, Boleophthalmus boddaerti, and Periophthalmodon schlosseri. Biol. Bull. 175: 434–438.

    Google Scholar 

  • Low, W.P., Y.K. Ip and D.J.W. Lane. 1990. A comparative study of the gill morphometry in the mudskippers–Periophthalmus chrysospilos, Boleophthalmus boddaerti, and Periophthalmodon schlosseri. Zool. Sci. 7: 29–38.

    Google Scholar 

  • Magnus, D.B.E. 1969. Bewegungsweisen des amphibischen Schleimfisches Lophalticus kirkii magnusi Klausewitz (Pisces, Salariidae) im Biotop. Zool. Anz., Suppl. 29: 547–555.

    Google Scholar 

  • Marliave, J.B. 1981. High intertidal spawning under rockweed, Fucus distichus, by the sharpnose sculpin Clinocottus acuti-ceps. Can. J. Zool. 59: 1122–1125.

    Google Scholar 

  • Marliave, J.B. and E.E. De Martini. 1977. Parental behavior of intertidal fishes of the stichaeid genus Xiphister. Can. J. Zool. 55: 60–63.

    Article  Google Scholar 

  • Martin, K.L.M. 1991a. Facultative aerial respiration in an intertidal sculpin, Clinocottus analis ( Scorpaeniformes: Cottidae). Physiol. Zool. 64: 1341–1355.

    Google Scholar 

  • Martin, K.L.M. 1991b. Aerial emergence and respiratory gas exchange in intertidal and subtidal fishes. Amer. Zool. 31: 58A.

    Google Scholar 

  • Martin, K.L.M. 1993. Aerial release of CO2 and respiratory exchange ratio in intertidal fishes out of water. Env. Biol. Fish. 37: 189–196.

    Google Scholar 

  • Martin, K.L.M. and J.R.B. Lighton. 1989. Aerial CO2 and 02 exchange during terrestrial activity in an amphibious fish, Alticus kirki ( Blenniidae ). Copeia 1989: 723–727.

    Google Scholar 

  • Miller, D.J. and R.N. Lea. 1972. Guide to the coastal marine fishesof California. University of California Press, Berkeley. 249 pp.

    Google Scholar 

  • Moore, P.G. and R. Seed (ed.) 1986. The ecology of rocky coasts Columbia University Press, New York. 467 pp.

    Google Scholar 

  • Nelson, J.S. 1984. Fishes of the world, 2nd ed. Wiley-Interscience, New York. 523 pp.

    Google Scholar 

  • Nonotte, G. and R. Kirsch. 1978. Cutaneous respiration in seven seawater teleosts. Resp. Physiol. 35: 111–118.

    Google Scholar 

  • Packard, G.C. 1974. The evolution of air-breathing in Paleozoic gnathostome fishes. Evolution 28: 320–325.

    Article  Google Scholar 

  • Paine, R.T. and A.R. Palmer. 1978. Sicyases sanguineus: a unique trophic generalist from the Chilean intertidal zone. Copeia 1978: 75–81.

    Google Scholar 

  • Pelster, B., C.R. Bridges and M.K. Grieshaber. 1988a. Physiological adaptations of the intertidal rockpool teleost Blennius pholis L., to aerial exposure. Respir. Physiol. 71: 355–374.

    Google Scholar 

  • Pelster, B., C.R. Bridges and M.K. Grieshaber. 1988b. Respiratory adaptations of the burrowing marine teleost Lumpenus lampretaeformis (Walbaum). II. Metabolic adaptations. J. Exp. Mar. Biol. Ecol. 124: 43–55.

    Google Scholar 

  • Quinn, T. and D.E. Schneider. 1991. Respiration of the teleost fish Ammodytes hexapterus in relation to its burrowing behavior. Comp. Biochem. Physiol. 98A: 71–75.

    Google Scholar 

  • Randall, D.J., W.W. Burggren, A.R Farrell and M.S. Haswell. 1981. The evolution of air breathing in vertebrates. Cambridge University Press, Cambridge. 133 pp.

    Book  Google Scholar 

  • Rao, H.S. and S.L. Hora. 1938. On the ecology, bionomics, and systematics of the blenniid fishes of the genus Andamia Blyth. Rec. Indian Mus. 40: 377–401.

    Google Scholar 

  • Riegle, K.C. 1976. Oxygen consumption, heart rates, whole body lactate levels and evaporative water loss in the monkeyface eel, Cebidichthys violaceus (family: Stichaeidae), an amphibious marine fish from California. Master’s Thesis, California State University, Fullerton. 72 pp.

    Google Scholar 

  • Rosen, S. and N.J. Friedley. 1973. Carbonic anhydrase activity in Rana pipiens skin: biochemical and histochemical analysis. Histochemie 36: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Sayer, M.D.J. and J. Davenport. 1991. Amphibious fish: why do they leave water? Rev. Fish Biol. Fisheries 1: 159–181.

    Google Scholar 

  • Scholander, P.F., E. Bradstreet and W.F. Garey. 1962. Lactic acid response in the grunion. Comp. Biochem. Physiol. 16: 201–203.

    Google Scholar 

  • Schottle, E. 1932. Morphologie and Physiologie der Atmung bei Wasser-, Schlamm-, and landlebenden Gobiiformen. Zeitschrift für wissenschaftl. Zoologie 140: 1–114.

    Google Scholar 

  • Shlaifer, A. and C.M. Breder, Jr. 1940. Social and respiratory behavior of small tarpon. Zoologica 25: 493–512.

    Google Scholar 

  • Smith, D.G. 1974. Insensitivity of toad carbon dioxide exchange to acetazolamide. Comp. Biochem. Physiol. 48A: 337–341.

    Google Scholar 

  • Stephenson, T.A. 1949. The universal features of zonation between tide-marks on rocky coasts. J. Ecol. 37: 289–305.

    Article  Google Scholar 

  • Stephenson, T.A. and A. Stephenson. 1972. Life between tidemarks on rocky shores. W.H. Freeman and Co., San Francisco. 425 pp.

    Google Scholar 

  • Stevens, J.K. and K.E. Parsons. 1980. A fish with double vision. Nat. Hist. 89: 62–67.

    Google Scholar 

  • Szelistowski, W.A. 1990. A new clingfish ( Teleostei: Gobeisocidae) from the mangroves of Costa Rica, with notes on its ecology and early development. Copeia 1990: 500–507.

    Google Scholar 

  • Tamura, S.O., H. Morii and M. Yuzuriha. 1976. Respiration of the amphibious fishes Periophthalmus cantonensis and Boleophthalmus chinensis in water and on land. J. Exp. Biol. 65: 97–107.

    Google Scholar 

  • Teal, J.M. and F.G. Carey. 1967. Skin respiration and oxygen debt in the mudskipper Periopthalmus sobrinus. Copeia 1967: 677679.

    Google Scholar 

  • Todd, E.S. 1973. Positive buoyancy and air-breathing: a new piscine gas bladder function. Copeia 1973: 461–464.

    Article  Google Scholar 

  • Todd, E.S.1976. Terrestrial grazing by the eastern tropical Pacific goby Gobionellus sagittula. Copeia 1976: 374–377.

    Google Scholar 

  • Todd, E.S. and A.W. Ebeling. 1966. Aerial respiration in the long-jaw mudsucker Gillichthys mirabilis ( Teleostei: Gobiidae). Biol. Bull. 130: 265–288.

    Google Scholar 

  • Truchot, J.P. and A. Duhamel-Jouve. 1980. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir. Physiol. 39: 241–254.

    Google Scholar 

  • Tytler, P. and T. Vaughan. 1983. Thermal ecology of the mudskippers, Periophthalmus koelreuteri (Pallas)) and Boleophthalmus boddaerti (Pallas) of Kuwait Bay. J. Fish Biol. 23: 327–337.

    Google Scholar 

  • Walker, B.W. 1952. A guide to the grunion. California Fish and Game 38: 409–420.

    Google Scholar 

  • Wright, W.G. and J.A. Raymond. 1978. Air-breathing in a California sculpin. J. Exp. Zool. 203: 171–176.

    Google Scholar 

  • Yoshiyama, R.M. and J.J. Cech, Jr. 1994. Aerial respiration by rocky intertidal fishes of California and Oregon. Copeia 1994: 153–158.

    Article  Google Scholar 

  • Zander, C.D. 1967. Beitrage zur Ökologie und Biologie litoralbewohnender Salariidae und Gobiidae (Pisces) aus dem Roten Meer. Wiss. Ergebn. Exped. `Meteor’ D2: 69–84.

    Google Scholar 

  • Zander, C.D. 1972a. Beziehungen zwischen Körperbau und Lebensweise bei Blenniidae (Pisces) aus dem Roten Meer. I. Aussere Morphologie. Mar. Bio1. 13: 238–246.

    Article  Google Scholar 

  • Zander, C.D. 1972b. Beziehungen zwischen Körperbau und Lebensweise bei Blenniidae (Pisces) des Roten Meeres. II. Bau der Flossen und ihrer Muskulatur. Z. Morph. Tiere 71: 299–327.

    Article  Google Scholar 

  • Zander, C.D. 1983. Terrestrial sojourns of two Mediterranean blennioid fish (Pisces, Blennioidei, Blenniidae). Senckenbergiana marit. 15: 19–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph J. Luczkovich Philip J. Motta Stephen F. Norton Karel F. Liem

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martin, K.L.M. (1995). Time and tide wait for no fish: intertidal fishes out of water. In: Luczkovich, J.J., Motta, P.J., Norton, S.F., Liem, K.F. (eds) Ecomorphology of fishes. Developments in environmental biology of fishes, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1356-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1356-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4620-8

  • Online ISBN: 978-94-017-1356-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics