Skip to main content

Phenotypic differences in buoyancy and energetics of lean and siscowet lake charr in Lake Superior

  • Chapter
Ecology, behaviour and conservation of the charrs, genus Salvelinus

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 22))

Synopsis

At least two phenotypes of lake charr, Salvelinus namaycush, coexist in Lake Superior. A lean morph frequents the shallow inshore waters (< 50 m) and the fat morph (siscowet) occupies the deeper offshore waters (50ā€“250 m). The objective of this study was to determine if the elevated lipid concentration of siscowets reduces the costs of swimming in deep water. First, we modelled the effects of body composition (lipids) on the costs of swimming by lake charr, and then compared these theoretical results with empirical evidence obtained from Cesium 137-based estimates of food consumption, gross energy conversion, and swimming costs (activity multiplier). The attributes of growth, energy content (kJ gāˆ’1), lipid concentrations, and Cesium 137 concentration (Bq gāˆ’1) were obtained from multimesh gillnet catches in eastern Lake Superior (1998 and 1999). The model showed that siscowet (fat) lake charr expended less energy than lean lake charr moving through the water column. Empirical evidence derived from Cesium 137 analysis confirmed that the activity multipliers of siscowets (fat) were less than those for lean charr. These findings support the view that the restoration of the fish community of the predominately deep water of the Great Lakes might be facilitated by the introduction of the fat phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Alexander, R.M. 1966. Physical aspects of swimbladder function. Biol. Rev. 41: 141ā€“176.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Alexander, R.M. 1972. The energetics of vertical migration of fishes. pp. 273ā€“294. In: M.A. Sleigh & A.G.M. MacDonald (ed.) Alexander, R.M. 26, Cambridge.

    Google ScholarĀ 

  • Arnold, G.P. & M.G. Walker. 1992. Vertical movements of cod (Gadus morhua L.) in the open sea and the hydrostatic function of the swimbladder. ICES J. Mar. Sci. 49: 357ā€“372.

    Google ScholarĀ 

  • Boisclair, D. & R Sirois. 1993. Testing assumptions of fish bioenergetic models by direct estimation of growth, consumption, and activity rates. Trans. Amer. Fish. Soc. 122: 784ā€“796.

    ArticleĀ  Google ScholarĀ 

  • Bronte, C.R. 1993. Evidence of spring spawning lake trout in lake Superior. J. Great Lakes Res. 19: 625ā€“629.

    ArticleĀ  Google ScholarĀ 

  • Bumham-Curtis, M.K. & G.R. Smith. 1994. Osteological evidence of genetic divergence of lake trout (Salvelinus namaycush) in Lake Superior. Copeia 1944: 843ā€“850.

    ArticleĀ  Google ScholarĀ 

  • Eschmeyer, P.H. & A.M. Phillips. 1965. Fat content of the flesh of siscowets and lake trout from I Ake Superior. Trans. Amer. Fish. Soc. 94: 62ā€“74.

    ArticleĀ  Google ScholarĀ 

  • Elliott, J.M. & L. Persson. 1978. The estimation of daily rates of food consumption for fish. J. Anim. Ecol. 47: 561ā€“580.

    ArticleĀ  Google ScholarĀ 

  • Elrod, J.H. & C.P. Schneider. 1987. Seasonal bathythermal distribution of juvenile lake trout in Lake Ontario. J. Great Lakes Res. 13: 1221ā€“1134.

    Google ScholarĀ 

  • Galligan, J.P. 1963. Depth distribution of lake trout and associated species in Cayuga Lake, New York. N.Y. Fish Game J. 10: 44ā€“68.

    Google ScholarĀ 

  • Hanson, P.C., J.W. Peck, R.G. Schorfhaar, J.H. Selgeby, D.R. Schreiner, S.T. Schram, B.L. Swanson, W.R. MacCallum, M.K. Burnham-Curtis, G.L. Curtis, J.W. Heinrich & R.J. Young. 1995. Lake trout (Salvelinus namaycush) populations in Lake Superior and their restoration, 1959ā€“1993. J. Great Lakes Res. 21 (Suppl. 1): 152ā€“175.

    ArticleĀ  Google ScholarĀ 

  • He, J. & D.J. Stewart. 1997. Comment-measuring the bioenergetic cost of fish activity in situ using a globally dispersed radio-tracer (ā€™ā€™Cs). Can. J. Fish. Aquat. Sci. 54: 1953ā€“1954.

    Google ScholarĀ 

  • Henderson, B.A. & S.J. Nepszy. 1994. Reproductive tactics of walleye (Stizostedion vitreum) in Lake Erie. Can. J. Fish. Aquas. Sci, 51: 986ā€“997.

    ArticleĀ  Google ScholarĀ 

  • Henderson, B.A. & J.L. Wong. 1998. Control of lake trout reproduction: role of lipids. J. Fish Biol. 52: 1078ā€“1082.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ihssen, P. & J.S. Tait. 1974. Genetic differences in retention of swimbladder gas between two populations of lake trout (Salvelinus namaycush). J. Fish. Res. Board Can. 31: 1351ā€“1354.

    ArticleĀ  Google ScholarĀ 

  • Kanwisher, J. & A. Ebeling. 1957. Composition of the swim-bladder gas in bathypelagic fishes. Deep Sea Research 4: 211ā€“217.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kerr, S.R. 1971. Prediction of fish growth efficiency in nature. J. Fish. Res. Board Can. 28: 809ā€“814.

    ArticleĀ  Google ScholarĀ 

  • Magnusson, J.J. 1970. Hydrostatic equilibrium of Euthynnus affenus, a pelagic teleost without a gas bladder. Copeia 1970: 56ā€“85.

    ArticleĀ  Google ScholarĀ 

  • Martin, G.W. 1969. Factors affecting retention of swimbladder gas in lake and brook trout and their hybrids. M.Sc. Thesis, York University, Toronto. 78 pp.

    Google ScholarĀ 

  • Martin, N.V. 1952. A study of the lake trout, Salvelinus namaycush, in two Algonquin Park, Ontario, lakes. Trans. Amer. Fish. Soc. 81: 111ā€“137.

    ArticleĀ  Google ScholarĀ 

  • Martin, N.V. & C.H. Olver. 1980. The lake charr, Salvelinus namaycush. pp. 205ā€“277. In: E.K. Baton (ed.) Charrs, Salmonid Fishes of the Genus Salvelinus, Dr W Junk Publishers, The Hague.

    Google ScholarĀ 

  • Robinson, W.R., R.H. Peters & J. Zimmerman. 1983. The effects of body size and temperature on metabolic rate of organisms. Can. J. Zool. 61: 281ā€“288.

    ArticleĀ  Google ScholarĀ 

  • Rowan, D.J. & J.B. Rasmussen. 1994. Bioaccumulation of radiocesium by fish: the influence of physiochemical factors and trophic structure. Can. 1. Fish. Aquat. Sci. 51: 2388ā€“2410.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rowan, D.J. & J.B. Rasmussen. 1995. The elimination of radio-cesium from fish. J. Appl. Ecol. 32: 739ā€“744.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rowan, D.J. & J.B. Rasmussen. 1996. Measuring the bioenergetics of fish activity in situ using a globally dispersed radiotracer (137Cs). Can. J. Fish. Aquat. Sci. 53: 734ā€“745.

    ArticleĀ  Google ScholarĀ 

  • Rowan, D.J. & J.B. Rasmussen. 1997. Replyā€“measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137Cs). Can. J. Fish. Aquat. Sci. 54: 1955ā€“1956.

    Google ScholarĀ 

  • Straight, W.J. 1969. Depth distribution of splake of known ability to retain swimbladder gas. M.Sc. Thesis, York University, Toronto. 45 pp.

    Google ScholarĀ 

  • Tait, J.S. 1972. A method of selecting trout hybrids (Salvelinus fontinalis x S. namaycush) for ability to retain swimbladder gas. J. Fish. Res. Board Can. 27: 39ā€“45.

    ArticleĀ  Google ScholarĀ 

  • Thurston, C.E. 1962. Physical characteristics and chemical composition of two subspecies of lake trout. J. Fish. Res. Board Can. 19: 39ā€“44.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Walters, C.J., G. Steer & G.R. Spangler. 1980. Responses of lake trout (Salvelinus namaycush) to harvesting, stocking, and lamprey reduction. Can. J. Fish. Aquat. Sci. 37: 2133ā€“2145.

    ArticleĀ  Google ScholarĀ 

  • Weast, R.C. (ed.) 1989. Handbook of chemistry and physics. CRC Press Inc., Boca Raton. 2435 pp.

    Google ScholarĀ 

  • Webb, P.W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190, Ottawa, 159 pp.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Magnan CĆ©line Audet HĆ©lĆØne GlĆ©met Michel Legault Marco A. RodrĆ­guez Eric B. Taylor

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, B.A., Anderson, D.M. (2002). Phenotypic differences in buoyancy and energetics of lean and siscowet lake charr in Lake Superior. In: Magnan, P., Audet, C., GlƩmet, H., Legault, M., Rodrƭguez, M.A., Taylor, E.B. (eds) Ecology, behaviour and conservation of the charrs, genus Salvelinus . Developments in environmental biology of fishes, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1352-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1352-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6088-4

  • Online ISBN: 978-94-017-1352-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics