Skip to main content

The developmental ecology of mycorrhizal associations in mayapple, Podophyllum peltatum, Berberidaceae

  • Chapter
Ecology and Evolutionary Biology of Clonal Plants

Abstract

Associations between plants and arbuscular mycorrhizal (AM) fungi are widespread and well-studied. Yet little is known about the pattern of association between clonal plants and AM fungi. Here we report on the pattern of mycorrhizal association within the rhizome systems of mayapple, Podophyllum peltatum. Mayapple is a long-lived understory clonal herb that is classified as obligately mycorrhizal. We found that while all mayapple rhizome systems maintained mycorrhizal associations, the percent colonization of roots by AM fungi differed among ramets of different age. The highest concentrations of AM fungi were in the roots of intermediate-aged ramets, while roots beneath the youngest ramet were not colonized. This pattern of ramet age or position-dependent colonization was observed in two separate studies; each conducted in a different year and at a different site. The pattern of AM fungal colonization of mayapple rhizome systems suggests that the mycorrhizal relationship is facultative at the ramet level. This conclusion is reinforced by our observation that augmentation of soil phosphate lowers root colonization by AM fungi. We also found that soil phosphate concentrations were depleted by ca. 1% under the same ramet positions where roots bore the highest AM fungal loads. Three non-exclusive hypotheses are proposed regarding the mechanisms that might cause this developmentally dependent pattern of mycorrhizal association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, L.K. and Gazey, C. (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159, 69–78.

    Google Scholar 

  • Allen, M.F. (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in cold desert. Mycologia 75, 773–776.

    Article  Google Scholar 

  • Allen, M.F. (1991) The Ecology of Mycorrhizae. Cambridge University Press, Cambridge. 184 pp.

    Google Scholar 

  • Allen, M.F. (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol. Res. 100, 769–782.

    Article  Google Scholar 

  • Allsop, N. (1998) Effect of defoliation on the arbuscular mycorrhizas of three perennial pasture and rangeland grasses. Plant Soil 202, 117–124.

    Article  Google Scholar 

  • Alpert, P. and Stuefer, J.F. (1997) Division of labor in clonal plants. In H. de Kroon and J. van Groenendael, (eds) The Ecology and Evolution of Clonal Plants. Backhuys Academic Publishers, Leiden, pp. 137–154.

    Google Scholar 

  • An, Z.Q., Guo, B.Z. and Hendrix, J.W. (1993) Populations of spores and propagules of mycorrhizal fungi in relation to the life cycles of tall fescue and tobacco. Soil Biol Biochem 25, 813–817.

    Article  Google Scholar 

  • Bates, T.E. (1993) Soil handling and preparation. In M.R. Carter (ed.) Soil Sampl Meth. Anal. Lewis, Ann Arbor, pp. 19–23.

    Google Scholar 

  • Benner, B. and Watson, M. (1989) Developmental ecology of mayapple: seasonal patterns of resource distribution in sexual and vegetative rhizome systems. Func. Ecol. 3, 539–547.

    Article  Google Scholar 

  • Binkley, D. and Vitousek, P. (1994) Soil nutrient availability. In R.W Pearcy, et al. (eds) Plant Physiological Ecology. - Field Methods and Instrumentation. Chapman and Hall, New York, pp. 75–83.

    Google Scholar 

  • Boerner, R.E.J. (1986) Seasonal nutrient dynamics, nutrient resorption, and mycorrhizal infection intensity of two perennial forest herbs. Amer. J. Bot. 73, 1249–1257.

    Article  Google Scholar 

  • Brundrett, M.C. (1996) Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 21, 171–313.

    Article  Google Scholar 

  • Brundrett, M.C. and Kendrick, B. (1988) The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Can. J. Bot. 66, 1153–1173.

    Article  Google Scholar 

  • Brundrett, M.C. and Kendrick, B. (1990a) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol. 114, 457–468.

    Article  Google Scholar 

  • Brundrett, M.C. and Kendrick, B. (1990b) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114, 479–486.

    Google Scholar 

  • Brundrett, M., Melville, L. and Peterson, L. (1994) Practical Methods in Mycorrhiza Research. Mycologue Publications, Guelph, Ontario. 161 pp.

    Google Scholar 

  • Brundrett, M.C., Piche, Y. and Peterson, R.L. (1984) A new method for observing the morphology of vescicular-arbuscular mycorrhizae. Can. J. Bot. 62, 2128–2134.

    Article  Google Scholar 

  • Caldwell, M.M. and Pearcy, R.W. (1994) Exploitation of Environmental Heterogeneity by Plants. Academic Press, New York. 429 pp.

    Google Scholar 

  • Callaghan, T.V. (1984) Growth and translocation in a clonal southern hemisphere sedge–Uncinia meridensis. J. Ecol. 72, 529–546.

    Article  Google Scholar 

  • Cooke, R. (1977) The Biology of Symbiotic Fungi. John Wiley and Sons Ltd., London. 282 pp.

    Google Scholar 

  • Cox, G., Sanders, F.E., Tinker, P.B. and Wild, J.A. (1975) Ultrastructural evidence relating to host endophyte transfer in a vesicular-arbuscular mycorrhiza. In F.E. Sanders, B. Mosse and P.B. Tinker (eds) Mycorrhizas. Academic Press, New York, pp. 297 312.

    Google Scholar 

  • DeMars, B.G. and Boerner, R.E.J. (1995) Mycorrhizal dynamics of three woodland herbs of contrasting phenology along topographic gradients. Amer. J. Bot. 82, 1426–1431.

    Article  Google Scholar 

  • Douds, D.D. Jr., Johnson, C.R. and Koch, K.E. (1988) Carbon costs of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Duke, S.E., Jackson, R.B. and Caldwell, M.M. (1994) Local reduction of mycorrhizal arbuscule frequency in enriched soil microsites. Can. J. Bot. 72, 998–1001.

    Article  Google Scholar 

  • Gay, P.E., Grubb, P.J. and Hudson, H.J. (1982) Seasonal changes in the concentrations of nitrogen, phosphorus and potassium, and in the density of mycorrhiza, in biennial and matrix-forming perennial species of closed chalkland turf. J. Ecol. 70, 571–593.

    Article  CAS  Google Scholar 

  • Geber, M.A., de Kroon, H. and Watson, M.A. (1997a) Organ preformation in mayapple as a mechanism for historical effects on demography. J. Ecol. 85, 211–223.

    Article  Google Scholar 

  • Geber, M.A., Watson, M.A. and de Kroon, H. (1997b) Development and resource allocation in perennial plants: The significance of organ preformation. In F.A Bazzaz and J. Grace (eds.) Plant Resource Allocation. Academic Press, London, pp. 113–141.

    Chapter  Google Scholar 

  • Gehring, C.A. and Whitham, T.G. (1992) Reduced mycorhizzae on Juniperus monosperma with mistletoe: the influence of environmental stress and tree gender on a plant parasite and plant-fungal mutualism. Oecologia 89, 298–303.

    Google Scholar 

  • Giovanetti, M. (1985) Seasonal variations of vesicular-arbuscular mycorrhizas and endogenous spores in a maritime sand dune. Trans. Brit. Mycol. Soc. 84, 679–684.

    Article  Google Scholar 

  • Giovannetti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500.

    Article  Google Scholar 

  • Graham, J.H. and Eissenstat, D.M. (1994) Host genotype and the formation and function of VA mycorrhizae. Plant Soil 159, 179–185.

    Google Scholar 

  • Graham, J.H., Eissenstat, D.M. and Drouillard, D.L. (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Func. Ecol. 5, 773–779.

    Article  Google Scholar 

  • Harley, J.L. and Smith, S.E. (1983) Mycorrhizal Symbiosis. Academic Press, London. 483 pp. Hendrix, J.W. (1993) Glomales mycorrhizal fungi as pathogens. Mycorrhiza News 5, 1–6.

    Google Scholar 

  • Jackson, R.B. and Caldwell, M.M. (1993) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74, 612–614.

    Article  Google Scholar 

  • Jakobsen, I. (1998) Transport of phosphorus and carbon in arbuscular mycorrhizas. In A. Varma and B. Hock (eds.), Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. 2nd ed. Springer, pp. 305–332.

    Google Scholar 

  • Jakobsen, 1., Abbot, L.K. and Robson, A.D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380.

    Article  CAS  Google Scholar 

  • Jónsdóttir, I.S. and Callaghan, T.V. (1990) Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. Ex Schwein. using ‘5N and nitrate reductase assays. New Phytol. 114, 419–428.

    Article  Google Scholar 

  • Jónsdóttir, I.S and Watson, M.A. (1997) Ecological significance of physiological integration in plants. In H. de Kroon and J. van Groenendael (eds) The Ecology and Evolution of Clonal Plants. Backhuys Academic Publishers, Leiden, pp. 109–136.

    Google Scholar 

  • Jónsdóttir, I.S., Callaghan, T.V. and Headley, A.D. (1996) Resource dynamics within arctic clonal plants. Ecol. Bull. 45, 53–64.

    Google Scholar 

  • Jones, C.S. and Watson, M.A. (2001) Heteroblasty and preformation in mayapple, Podophyllum peltatum (Berberidaceae): developmental flexibility and morphological constraint. Am. J. Bot. 88, 1340–1358.

    Article  PubMed  CAS  Google Scholar 

  • Koide, R. (1985) The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytol. 99, 449–462.

    Article  Google Scholar 

  • Landa, K., Benner, B., Watson, M.A. and Gartner, J. (1992) Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63, 348–356.

    Google Scholar 

  • Mayr, R. and Goday, R. (1989) Seasonal patterns in vesicular-arbuscular mycorrhiza in a mesic beech forest. Agric. Ecosyst. Envir. 29, 281–288.

    Google Scholar 

  • Marshall, C. and Price, E.A.C. (1997) Sectoriality and its implications for physiological integration. In H. de Kroon and J. van Groenendael (eds) The Ecology and Evolution of Clonal Plants. Backhuys Academic Publishers, Leiden, pp. 79–108.

    Google Scholar 

  • Newsham, K.K., Fitter, A.H. and Watkinson, A.R. (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10, 408–411.

    Article  Google Scholar 

  • Policansky, D. (1987) Sex choice and reproductive costs in jack-in-the-pulpit. Size determines a plant’s sexual state. Bioscience 37, 476–481.

    Article  Google Scholar 

  • Read, D.J. (1998) Mycorrhiza–the state of the art. In A. Varma and B. Hock (eds) Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. 2nd ed. Springer, pp. 3–36.

    Google Scholar 

  • Sanders, I.R. and Fitter, A.H. (1992) The ecology and functioning of vesicular-arbuscular mycorrhizae in co-existing grassland species. I. Seasonal patterns of mycorrihizal occurrence and morphology. New Phytol. 120, 517–524.

    Article  Google Scholar 

  • SAS (1988) SAS/STAT User’s Guide. Release 6. 03. SAS Institute Inc., Cary, N.C.

    Google Scholar 

  • Schemer, S.M. and Gurevitch, J. (ed) (2000) Design and Analysis of Ecological Experiments. 2nd ed. Oxford University Press, New York, 415 pp.

    Google Scholar 

  • Schoenau, J.J. and Karamanos, R.E. (1993) Sodium bicarbonate-extractable P, K and N. In M.R. Carter (ed.) Soil Sampling and Methods of Analysis, Lewis Publ., Ann Arbor, pp. 51–58.

    Google Scholar 

  • Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbioses. Academic Press, San Diego, 605 pp.

    Google Scholar 

  • Smith, F.A. and Smith, S.E. (1996) Mutualism and parasitism: diversity in function and structure in the `arbuscular’ (VA) mycorrizal symbiosis. Adv. Bot. Res. 22, 1–43.

    Article  Google Scholar 

  • Sohn, J.J. and Policansky, D. (1977) The costs of reproduction in the mayapple Podophyllum peltatum (Berberidaceae). Ecology 58, 1366–1374.

    Article  Google Scholar 

  • St. John, T.V. and Coleman, D.C. (1983) The role of mycorrhizae in plant ecology. Can. J. Bot. 61, 1005–1014.

    Google Scholar 

  • Streitwolf-Engel, R., Boller, T., Wiemken, A. and Sanders, I.R. (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J. Ecol. 85, 181–191.

    Article  Google Scholar 

  • Streitwolf-Engel, R., van der Heijden, M.G.A., Wiemken, A. and Sanders, I.R. (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82 (10), 2846–2859.

    Article  Google Scholar 

  • Watson, M.A. and Lu, Y. (1999) Timing of shoot senescence and demographic expression in the clonal perennial Podophyllum Peltatum (Berberidaceae). Oikos 86, 67–78.

    Article  Google Scholar 

  • Zobel, M., Moora, M. and Haukioja, E. (1997) Plant coexistence in the interactive environment: arbuscular mycorrhiza should not be out of mind. Oikos 78, 202–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxine A. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watson, M.A., Scott, K., Griffith, J., Dieter, S., Jones, C.S., Nanda, S. (2002). The developmental ecology of mycorrhizal associations in mayapple, Podophyllum peltatum, Berberidaceae. In: Stuefer, J.F., Erschbamer, B., Huber, H., Suzuki, JI. (eds) Ecology and Evolutionary Biology of Clonal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1345-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1345-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6047-1

  • Online ISBN: 978-94-017-1345-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics