Skip to main content

Canalized pathways of change and constraints in the evolution of reproductive modes of microarthropods

  • Chapter
Ecology and Evolution of the Acari

Part of the book series: Series Entomologica ((SENT,volume 55))

Abstract

This study investigates how the course of evolutionary change of an organismal pattern is canalized by organismal properties. As an example we use the mechanisms of indirect sperm transfer of some microarthropod groups. Miniaturized droplet spermatophores, characterized by a rather similar pattern of structural and functional components, are shown to have evolved independently in the Acari-Actinotrichida and the Pseudoscorpiones within the Arachnida, and in the Entognatha (Collembola and Diplura-Campodeoidea), Symphyla, Pauropoda and Pselaphognatha within the Antennata. At least in the phylogenetic lineages leading to the various antennatan groups, evolution of miniaturized spermatophores took place in a similar sequence of transformation steps. It is likely that — originally — large sac-spermatophores, with a rigid sheath, were deposited on the ground. The subsequent sequence of evolution involved carrying structures, a viscous sheath of the spermatophore-droplets, a stable water balance of the spermatophore under habitat conditions, and miniaturized spermatophore-droplets with immobilized sperm cells. Finally, mate dissociation became a common mode of behaviour in all groups mentioned. Each of the transformation steps was not only an adaptation to a particular selective condition, but additionally a precondition for further adaptive innovation. In this way the sequence of evolutionary change was rigidly determined. Moreover, integration of subsequently evolved components of the spermatophores into a complex network of interacting components obviously caused constraints of interaction, which in turn have affected evolutionary stability of the character-patterns. Using water mites as an example, it is shown how in a changed environment few behavioural changes have initiated an evolutionary sequence which finally has led convergently in several lineages to semidirect or direct sperm transfer and to a massive repatterning of the original reproduction pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti, G. 1980a. Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari). I. Anactinotrichida. Zool. Jb. Anat. 104: 77–138.

    Google Scholar 

  • Alberti, G. 1980b. Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari). II. Actinotrichidae. Zool. Jb. Anat. 104: 144–203.

    Google Scholar 

  • Alberti, G. 1991. Spermatology in the Acari: systematic and functional implications. In: R. Schuster and P. Murphy (eds), The Acari: Reproduction, Development and Life-History Strategies. Chapman & Hall, London: 77 – 105.

    Google Scholar 

  • Alberti, G. 1995. Comparative spermatology of Chelicerata: Review and perspective. Mém. Mus. nat. Hist. nat. 166: 203–230.

    Google Scholar 

  • Alberti, G., Fernandez, N.A. and Kümmel, G. 1991. Spermatophores and spermatozoa of oribatid mites (Acari: Oribatida). Part II: Functional and systematical considerations. Acarologia 32: 435–449.

    Google Scholar 

  • Alexander, R.D. 1964. The evolution of mating behavior in arthropods. In: K.C. Highnam (ed.), Insect Reproduction. Symp. R. Entomol. Soc. Lond. No. 2: 78 – 94.

    Google Scholar 

  • Angermann, H. 1957. Über Verhalten, Spermatophorenbildung und Sinnesphysiologie von Euscorpius italicus Hbst. und verwandten Arten ( Scorpiones, Chactidae). Z. Tierpsychol. 14: 276–302.

    Google Scholar 

  • Baccetti, G. 1985. Evolution of the sperm cell. In: Metz, C.B. and Monroy, A. Biology of Fertilization. Vol. 2. Biology of the sperm. Academic Press, Orlando: 358.

    Google Scholar 

  • Baccetti, B., Dallai, F., Bernini, F. and Mazzini, M. 1974. The spermatozoa of Arthropoda. XXIV. Sperm metamorphosis in the diplopod Polyxenus. J. Morphol. 143: 187 – 246.

    Article  PubMed  CAS  Google Scholar 

  • Bareth, C. 1964. Structure et dépôt des spermatophores chez Campodea remyi. C. R. Acad. Sc. Paris. 259: 1572 – 1575.

    Google Scholar 

  • Bareth, C. 1965. Le spermatophore de Lepidocampa (Diploures, Campodéidés). C. R. Acad. Sc. Paris. 260: 3755 – 3757.

    Google Scholar 

  • Bareth, C. 1968. Biologie sexuelle et formations endocrines de Campodea remyi Denis ( Diploures, Campodéidés). Rev. Ecol. Biol. Sol. 3: 303 – 426.

    Google Scholar 

  • Bareth, C. 1974. An ultrastructural study of the spermatids of Campodea remyi Denis ( Diplura, Campodeidea) at the bundle stage. Cell and Tissue Research. 149: 555 – 566.

    Google Scholar 

  • Bitsch, J. 1990. Ultrastructure of the phallic glands of the firebrat, Thermobia domestica (Packard) ( Thysanura: Lepismatidae). Int. J. Ins. Morphol. & Embryol. 19: 65 – 78.

    Google Scholar 

  • Böttger, K. 1962. Zur Biologie und Ethologie der einheimischen Wassermilben Arrenurus (Megaluracarus) globator (Müll.), 1776 Piona nodata nodata (Müll.), 1776 und Eylais infundibulifera meridionalis (Thon), 1899 ( Hydrachnellae, Acari). Zool.Jb. Syst. 89: 501 – 584.

    Google Scholar 

  • Böttger, K. 1965. Zur Ökologie und Fortpflanzungsbiologie von Arrenurus valdiviensis K. O. Viets 1964 ( Hydrachnellae, Acari). Zool. Jb. Syst. 55: 115 – 141.

    Google Scholar 

  • Böttger, K. 1966. Einige biologisch-ökologische Beobachtungen an Euthyas truncata (Neum. 1875 ) und Hydryphantes ruber ruber (Geer 1778) ( Hydrachnellae, Acari). Zool. Anz. 177: 263 – 271.

    Google Scholar 

  • Brunhuber, B.S. 1969. The formation of the Scolopendromorph spermatophore. Bull.Mus. Hist. nat., Paris. 41: 24 – 27.

    Google Scholar 

  • Cassagne-Méjean, F. 1966. Contribution a l’étude des Arrenuridae ( Acari, Hydrachnellae) de France. Acarologia (Supplemental ) 8: 1 – 186.

    Google Scholar 

  • Coddington, J.A. 1988. Cladistic tests for adaptational hypotheses. Cladistics 4: 3 - 22.

    Article  Google Scholar 

  • Dallai, R. 1970. The spermatozoa of Arthropoda. XI. Further observations on Collembola. In: Baccetti, B. (ed.), Comparative Spermatology. New York, London. 275 – 279.

    Google Scholar 

  • Davids, C. and Belier, R. 1979. Spermatophores and sperm transfer in the watermite Hydrachna conjecta Koen. Reflections of the descent of water mites from terrestrial forms. Acarologia 21: 84 – 90.

    Google Scholar 

  • Demange, J.M. 1956. Contributions à l’étude de la biologie, en captivité de Lithobius piceus gracilitarsus Bröl. (Myriapodes, Chilopodes). Bull. Mus. Hist. nat., Paris. 28: 388 – 393.

    Google Scholar 

  • Döring, D. 1986. On the male reproduction biology of Orchesella cincta (Collembola, Sminthuridae). In: Dallai, R. (ed.).: 2nd International Seminar on Apterygota, Siena: 171 – 176.

    Google Scholar 

  • Döring, D. 1988. Morphologie und Funktion der männlichen Forpflanzungsorgane und Spermatophoren von Dicyrtoma minuta (Collembola, Sminthuridae). Zool. Beitr. N.F. 32 (1): 51 – 80.

    Google Scholar 

  • Döring, D. and Witte, H. 1985. Anpassung des Wasserhaushaltes der Spermatophoren bodenlebender Arthropoden an wechselnde Luftfeuchte. Verhandl. Ges. Ökol. 9: 677 – 683.

    Google Scholar 

  • Dohle, W. 1980. Sind die Myriapoda eine monophyletische Gruppe? Abh. naturwiss. Ver. Hamburg (N.F.). 23: 45 – 104.

    Google Scholar 

  • Dohle, W. 1985. Phylogenetic pathways in the Chilopoda. Bijdrag. Dierkunde 55 (1): 55 – 66.

    Google Scholar 

  • Dohle, W. 1986. Myriapoda and the ancestry of insects. The Manchester Polytechnic Coll.: 1 – 28.

    Google Scholar 

  • Dohle, W. (in press). Myriapod - insect relationships as opposed to an insect-crustacean sister group relationship. In: Fortey, R. and Thomas, R. (eds.). Arthropod relationships.

    Google Scholar 

  • Edgar, A.L. 1971. Studies on the biology and ecology of Michigan Phalangida (Opiliones). Misc. Publ. Mus. Zool. Univ. Mich. 144: 1 – 64.

    Google Scholar 

  • Enghoff, H. 1984. Phylogeny of millipedes - a cladistic analysis. Z. zool. Syst. Evolut.-forsch. 22: 8 – 26.

    Google Scholar 

  • Enghoff, H. 1990. The ground-plan of chilognathan millipedes. In: Minelli, A. (ed). Proc. of the 7th int. Congr. of Myriapodology. Leiden: E.J. Brill. 1 – 21.

    Google Scholar 

  • Evans, G.O. 1992. Principles of Acarology. CAB International, Wallingford.

    Google Scholar 

  • Fernandez, N.A., Alberti, G. and Kummel, G. 1991. Spermatophores and spermatozoa of oribatid mites ( Acari: Oribatida). Part I. Fine structure and histochemistry. Acarologia 32: 261 – 286.

    Google Scholar 

  • Fabre, M. 1855. Recherches sur l’anatomie des organes reproducteures et sur le développement des Myriapodes. Ann. Sci. Nat. (4 e sér) 3: 257 – 316.

    Google Scholar 

  • Gould, S.J. and Lewontin, R.C. 1979. The spandrels of San Marco and the Panglossian paradigma: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205: 581–598.

    Google Scholar 

  • Hagens, B. 1989. The functional morphology of the reproductive system of Petrobius brevistylis (Machilidae, Archaeognatha). In: R. Dallai (ed.). 3rd International Seminar on Apterygota. Siena: 229 – 235.

    Google Scholar 

  • Halik, L. 1955. 0 kopulâch vodule Brachypoda versicolor ( Müll. ). Biolôgia 10: 464–474.

    Google Scholar 

  • Hall, B.K. 1996. Baupläne, phylotypic stages and constraint. Why there are so few types of animals. Evolutionary Biology 29: 215–261.

    Google Scholar 

  • Hennig, W. 1969. Die Stammesgeschichte der Insekten. W. Kramer Verlag, Frankfurt a. M.

    Google Scholar 

  • Hevers, J. 1978. Zur Sexualbiologie der Gattung Unionicola ( Hydrachnellae, Acari). Zool. Jb. Syst. 105: 33–64.

    Google Scholar 

  • Juperthie-Jupeau, L. 1963. Recherches sur la reproduction et la mue chez les Symphyles. Arch. Zool. Exp. Gen. 102: 1 – 172.

    Google Scholar 

  • Klingel, H. 1959. Indirekte Spermatophorenübertragung bei Geophiliden ( Hundertfüsser, Chilopoda). Naturwissenschaften 46: 632 – 633.

    Google Scholar 

  • Klingel, H. 1960a. Vergleichende Verhaltensbiologie der Chilopoden Scutigera coleoptrata L. und Scolopendra cingulata Latreille. Zeitschr. Tierphys. 17 (1): 11 – 30.

    Google Scholar 

  • Klingel, H. 1960b. Die Paarung des Lithobius forficatus L. Verh. dtsch. zool. Ges. 23: 326 – 332.

    Google Scholar 

  • Klingel, H. 1962. Das Paarungsverhalten des malaiischen Höhlentausendfusses Thereuopoda decipiens cavernicola Verhoeff ( Scutigeromorpha, Chilopda). Zool. Anz. 1969: 458 – 460.

    Google Scholar 

  • Kristensen, N.P. 1995. Forty years insect phylogenetic systematics: Hennig’s “Kritische Bemerkungen…” and subsequent developments. Zoologische Beiträge 36: 83 – 124.

    Google Scholar 

  • Lanciani, C.A. 1972. Mating behavior of water mites of the genus Eylais. Acarologia 14: 631 – 637.

    Google Scholar 

  • Laviale, M.L. 1964. Présence de spermatophores chez Stylopauropus pedunculatus (Lubb.) (Pauropode, Myriapode). CR Acad. Sci. Paris. 259: 652 – 654.

    Google Scholar 

  • Legg, G. 1973. Spermatophore formation in the pseudo-scorpion Chthonius ischnocheles (Chthoniidae). J. Zool., Lond. 170: 367 – 394.

    Google Scholar 

  • Legg, G. 1977. Sperm transfer and mating in Ricinoides hanseni. J. Zool. ( Lond. ). 182: 51 – 61.

    Google Scholar 

  • Leimann, J. 1991. Structure and formation of the sperm package of Piona carnea (Koch 1836) (Prostigmata, Hydrachnidia) a copulating water mite. In: Dusbabek, F. and Bukva, V. (eds.). Modern Acarology Vol. 2 Academia, Prague. 449 – 454.

    Google Scholar 

  • Lindquist, E.E. 1984. Current theories on the evolution of major groups of Acari and their relationships with other groups of the Arachnida, with consequent implications for their classification. In: D.A. Griffiths and C.E. Bowman, Acarology 6, Vol. 1, Ellis Horwood, Chichester. 28 – 62.

    Google Scholar 

  • Lundblad, O. 1929a. Einiges über die Kopulation bei Aturus scaber und Midea orbiculata. Z. Morph. Ökol. Tiere 15: 474–480.

    Google Scholar 

  • Lundblad, O. 1929b. Über den Begattungsvorgang bei einigen Arrhenurus-Arten. Z. Morph. Ökol. Tiere 15: 705–722.

    Google Scholar 

  • Mann, T. 1984. Spermatophores: Development, Structure, Biochemical Attributes and role in the Transfer of Spermatozoa. Springer-Verlag, Berlin.

    Google Scholar 

  • McKitrick, M. 1993. Phylogenetic constraint in evolutionary theory: Has it any explanatory power? Annu. Rev. Ecol. Syst. 24: 307–330.

    Google Scholar 

  • Meyer, E. 1985. Der Entwicklungszyklus von Hydrodroma despiciens (O. F. Müller 1776 ) (Acari: Hydrodromidae). Arch. Hydrobiol. Suppl. 66: 321–453.

    Google Scholar 

  • Miles, D.B. and Dunham A.E. 1993. Historical perspectives in ecology and evolutionary biology: The use of phylogenetic comparative analyses. Annu. Rev. Ecol. Syst. 24: 587–619.

    Google Scholar 

  • Mitchell, R. 1957. The mating behavior of pionid water mites. Am. Midl. Nat. 58: 360–366.

    Google Scholar 

  • Mitchell, R. 1958. Sperm transfer in the water-mite Hydryphantes ruber Geer. Am. Midl. nat. 60: 156–158.

    Google Scholar 

  • Norton, R.A. (1998). Morphological evidence for the evolutionary origin of Astigmata. Exp. Appl. Acarol. 22: 559–594.

    Google Scholar 

  • Oster, G.F. and Alberch, P. 1982. Evolution and bifurcation of developmental programs. Evolution 36: 444 – 459.

    Article  Google Scholar 

  • Pahnke, J. 1974. Anatomisch-biologische Untersuchungen an Limnochares aquatica L. (Hydrachnellae, Acari). Dissertation, Univ. of Kiel. 90 pp.

    Google Scholar 

  • Pantin, C.F.A. 1951. Organic design. Adv. Sci. 8: 138–150.

    Google Scholar 

  • Poggendorf, D. 1956. Über rhythmische sexuelle Aktivität und ihre Beziehung zur Häutung und Paarbildung bei arthropleonen Collembolen. Naturwissenschaften 43: 45.

    Article  Google Scholar 

  • Proctor, H.C. 1991. The evolution of copulation in water mites: a comparative test for nonreversing characters. Evolution 45 (3): 558 – 567.

    Article  Google Scholar 

  • Proctor, H.C. 1992a. Mating and spermatophore morphology of water mites ( Acari: Parasitengona). Zool. J. Linn. Soc. 106: 341–384.

    Google Scholar 

  • Proctor, H.C. 1992b. Sensory exploitation and the evolution of male mating behaviour: a cladistic test using water mites ( Acari: Parasitengona). Anim. Behag. 44: 745–752.

    Google Scholar 

  • Rajulu, G.S. 1970. A study on nature and formation of the spermatophore in a centipede Ethmostigmus spinosus (Scolopendromorpha, Myriapoda). Bull. Mus. Hist. nat., Paris. 41: 116–121.

    Google Scholar 

  • Rechenberg, I. 1973. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.

    Google Scholar 

  • Riedl, R. 1975. Die Ordnung des Lebendigen. Systembedingungen der Evolution. Parey, Hamburg.

    Google Scholar 

  • Rieger, R. and Tyler, S. 1985. Das Homologietheorem in der Ultrastrukturforschung. In: Ott, J.A., Wagner, G.P. and Wuketits, F. (eds.).: Evolution, Ordnung und Erkenntnis. Paul Parey, Berlin, Hamburg. 2136.

    Google Scholar 

  • Roth, G. and Wake, D.B. 1985. Trends in the functional morphology and sensomotor control of feeding behavior in salamanders: an example of the role of internal dynamics in evolution. Acta Biotheoretica 34: 175 – 192.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, F. 1954. Indirekte Spermatophorenübertraung bei Campodea ( Apterygota, Diplura). Die Naturwissenschaften 41: 406–407.

    Google Scholar 

  • Schaller, F. 1979. Significance of sperm transfer and formation of spermatophores in arthropod phylogeny. In: Gupta, A.P. (ed.): Arthropod phylogeny. New York, Toronto, London. 587 – 608.

    Google Scholar 

  • Schliwa, W. 1965. Vergleichend anatomischhistologische Untersuchungen über die Spermatophorenbildung bei Collembolen (mit Berücksichtigung der Dipluren und Oribatiden). Zool. Jb. Anat. 82: 445–520.

    Google Scholar 

  • Schömann, K.-H. 1956. Zur Biologie von Polyxenus lagurus. Zool. Jb. Syst. 84: 195–226.

    Google Scholar 

  • Schuster, R. and Hasenhütl, K. 1983. Die Spermatophore der Eurypauropodiden ( Myriapoda, Pauropoda). Zool. Anz. 211: 187–196.

    Google Scholar 

  • Schwoerbel, J. 1962. Paarungsverhalten bei Wassermilben. Die Natur. Deutsch. Naturkd. Ver. 70: 218–223.

    Google Scholar 

  • Sluys, R. 1988. On adaptation, the assessment of adaptations, and the value of adaptive arguements in phylogenetic reconstruction. Z. zool. Syst. Evolut.forsch. 26: 12–26.

    Google Scholar 

  • Shultz, J.W. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics 6: 1 – 38.

    Article  Google Scholar 

  • Stearns, S.C. 1992. The Evolution of Life Histories. Oxford Univ. Press. Oxford, New York, Tokyo.

    Google Scholar 

  • Sturm, H. 1955. Beiträge zur Ethologie einiger mitteldeutscher Machiliden. Z. Tierphysiol. 12: 337–363

    Google Scholar 

  • Sturm, H. 1956. Die Paarung beim Silberfischchen Lepisma saccharina. Z. Tierpsychol. 13: 1 – 12.

    Article  CAS  Google Scholar 

  • Sturm, H. 1978. Zum Paarungsverhalten von Petrobius maritimus Leach (Machilidae: Archaeognatha: Insecta). Zool. Anz. 201 (1/2): 5 – 20.

    Google Scholar 

  • Sturm, H. 1986. Aspekte des Paarungsverhaltens bei den Machiloidea ( Archaeognatha, Insecta). Braunschw. Naturk. Schr. 2: 507–518.

    Google Scholar 

  • Sturm, H. 1987. Das Paarungsverhalten von Thermobia domestica (Packard) (Lepismatidae, Zygentoma, Insecta). Braunschw. Naturk. Schr. 2: 693–711.

    Google Scholar 

  • Sturm, H. 1992. Mating behaviour and sexual dimorphism in Promesomachilis hispanica Silvestri, 1923 (Machilidae, Archaeognatha, Insecta). Zool. Anz. 228: 60–73.

    Google Scholar 

  • Sturm, H. and Adis, J. 1984. Zur Entwicklung und zum Paarungsverhalten zentral-amazonischer Meinertellidae (Machiloidea, Archaeognatha, Insecta). Amazonia 8 (4): 447 – 473.

    Google Scholar 

  • Thomas, R.H. and Zeh, D.W. 1984. Sperm transfer and utilization strategies in arachnids: ecological and morphological constraints. In R.L. Smith (ed.): Sperm Competition and the Evolution of Animal Mating Systems. Academic Press Toronto. 179 – 221.

    Google Scholar 

  • Thys, K. 1989. Struktur des männlichen Genitaltraktes und Bildung der Spermatophore bei Thermobia do-mestica (Packard) (Lepismatidae, Zygentoma, Insecta). Zool. Jb. Anat. 119: 265–279.

    Google Scholar 

  • Tyler, S. 1988. the role of function in determination of homology and convergence - examples from invertebrate adhesive organs. Fortschr. d. Zool./Progr. in Zool. 36: 331–347.

    Google Scholar 

  • Uchida, T. 1932. Some ecological observations on watermites. J. Fac. Sci., Hokkaido Imperial Univ. 23: 143–166.

    Google Scholar 

  • Ullrich, F. 1976. Biologisch-ökologische Studien an rheophilen. Wassermilben (Hydrachnellae, Acari), unter besonderer Berücksichtigung von Sperchon setiger (Thor 1898 ). Dissertation, University of Kiel.

    Google Scholar 

  • Verhoef, H.A., Nagelkerke, C.J. and Joosse, E.N.G. 1977. Aggregation pheromones in Collembola. J. Insect Physiol. 23: 1009 – 1019.

    Article  Google Scholar 

  • Viets, K. 1914. Über die Begattungsvorgänge bei Acercus-Arten. Int. Revue ges. Hydrobiol. Hydrogr. Suppl. 6: 1–10.

    Google Scholar 

  • Wagner, G.P. and Misof, B.Y. 1993. How can a character be developmentally constrained despite variation in developmental pathway ? J. Evol. biol. 6: 449455.

    Google Scholar 

  • Weygoldt, P. 1966. Vergleichende Untersuchungen zur Fortpflanzungsbiologie der Pseudoskorpione. Beobachtungen über das Verhalten, die Samenübertragungsweisen und die Spermatophoren einiger einheimische Arten. Z. Morph. Ökol. Tiere 56: 39-92.

    Google Scholar 

  • Weygoldt, P. 1972. Spermatophorenbau und Samenübertragung bei Uropygen (Mastigoproctus brasilianus C.L. Koch) und Amblypygen (Charinus brasilianus Weygoldt und Admetus pumilio C.L. Koch) ( Chelicerata, Arachnida). Z. Morph. Tiere 71: 23–51.

    Google Scholar 

  • Weygoldt, P. 1975. Die indirekte Spermatophorenübertragung bei Arachniden. Verh. Dtsch. Zool. Ges. 67: 308–313.

    Google Scholar 

  • Weygoldt, P. and Paulus, H.F. 1979a. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I. Morphologische Untersuchungen. Z. zool. Syst. Evolut.-forsch. 17: 85–116.

    Google Scholar 

  • Weygoldt, P. and Paulus, H.F. 1979b. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I1. Cladogramme und die Entfaltung der Chelicerata. Z. zool. Syst. Evolut.-forsch. 17: 177–200.

    Google Scholar 

  • Weygoldt, P., Weisemann, A. and Weisemann, K. 1972. Morphologisch-histologische Untersuchungen an den Geschlechtsorganen der Amblypygi unter besonderer Berücksichtigung von Tarantula marginemaculata C.L. Koch (Arachnida). Z. Morph. Tiere 73: 209–247.

    Google Scholar 

  • Whitington, P.M. 1996. Evolution of neural development in the arthropods. Seminars in Cell & Developmental Biology 7: 605 – 614.

    Article  Google Scholar 

  • Witte, H. 1975. Funktionsanatomie der Genitalorgane und Fortpflanzungsverhalten bei den Männchen der Erythraeidae ( Acari, Trombidiformes). Z. Morph. Tiere 80: 137–180.

    Google Scholar 

  • Witte, H. 1984. The evolution of the mechanisms of reproduction in the Parasitengonae (Acarina: Prostigmata). In: D.A. Griffiths and Bowman, C.E. (eds.). Acarology 6, Vol. 1. Ellis Horwood Ltd., Chichester: 470 – 478.

    Google Scholar 

  • Witte, H. 1991. Indirect sperm transfer in prostigmatic mites from a phylogenetic viewpoint. In: Schuster, R. and Murphy, P.W. (eds.). The Acari: Reproduction, Development and Life-History Strategies. Chapman and Hall, London: 137 – 176.

    Google Scholar 

  • Witte, H. and Olomski, R. (in press). The evolutionary transformation of functional systems in the Parasitengonae. In: Mitchell, R., Horn, D.J., Needham G.R. and Welbourn W.C. (eds). Acarology IX, Vol. 2, Symposia. The Ohio Biological Survey, Columbus.

    Google Scholar 

  • Witte, H. and Olomski, R. (in prep.). Phylogenetic relationships within the water mites.

    Google Scholar 

  • Woodring, J.P. 1970. Comparative morphology, homologies and functions of the male system in oribatid mites ( Arachnida, Acari). J. Morphol. 132: 425–451.

    Google Scholar 

  • Woodring, J.P. and Cook, E.F. 1962. The internal anatomy, reproductive physiology, and molting process of Ceratozetes cisalpinus ( Acarina: Oribatei). Ann. Entomol. Soc. Am. 55: 164–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Witte, H., Döring, D. (1999). Canalized pathways of change and constraints in the evolution of reproductive modes of microarthropods. In: Bruin, J., van der Geest, L.P.S., Sabelis, M.W. (eds) Ecology and Evolution of the Acari. Series Entomologica, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1343-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1343-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5200-1

  • Online ISBN: 978-94-017-1343-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics