Skip to main content

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 17))

Abstract

Abstract. A strong candidate for use in future missions to map time variations in the Earth’s gravity field is laser heterodyne measurements between separate spacecraft. At the shortest wavelengths that can be measured in space, the main accuracy limitation for variations in the potential with latitude is expected to be the frequency stability of the laser. Thus the development of simple and reliable space-qualified lasers with high frequency stability appears to be an important goal for the near future.

In the last few years, quite high stability has been achieved by locking the second harmonic of a Nd:YAG laser to a resonant absorption line of iodine molecules in an absorption cell. Such a laser system can be made quite robust, and temperature related frequency shifts can be controlled at a low value. Recent results from laboratory systems are described. The Allan standard deviation for the beat between two such lasers was 2 × 10−14 at 10 s, and reached 7 × 10−15 at 600 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bender, PL.: 1992. ‘Integrated laser Doppler method tor measuring planetary gravity fields.’ in From Mars 10 Greenland: Charting Gravity wilh Space and Airborne Instruments. 1AG Symposium. Vol. 110, Springer-Verlag, pp. 63–72.

    Google Scholar 

  • Cheng, W.-Y., Chen, I., Yoon, T.-H., Hall, J. I, and Ye. J.: 2002, ‘Sub-Doppler molecular iodine transitions near the dissociation limit (523 to 498 nm),’ Opt. Lett. 827. p. 571.

    Article  Google Scholar 

  • Colombo. O.L. and Chao, B.F.: 1992. ‘Global gravitational change from space in 2001,’ IAG Symposium Vol. 112, Potsdam.

    Google Scholar 

  • Danzmann, K.V. et al.: 1998, LISA-Laser Interferometer Space AnLenna Pre-Phase A Report, 2nd edit, MPQ 233.

    Google Scholar 

  • Hammesahr. A,: 2001 ‘LISA mission study overview,’ Class, and Quantum Grav. 18. pp. 4045–4051.

    Google Scholar 

  • Ishibasbi, C., Ye, J. and Hall, J.L.: 2002. ‘Issues and applications in ultra-sensitive molecular spectroscopy,’ in Melhods for Ultrasensitive Detection 11, C. W. Wilkerson, Jr., Ed.. SPIE Vol. 4634 pp. 58–69.

    Google Scholar 

  • LISA Study Team: 2000, ‘LISA Laser Interferometer Space Antenna: a Cornerstone Mission for the Observation of Gravitational Waves,’ ESA-SCI(2000)I I, European Space Agency.

    Google Scholar 

  • Robertson, D. L., McNamara, P., Ward, H. and Hough, J.: 1997. ‘Optics for LISA,“ Class, and Quantum Grav. 14. pp. 1575–1577.

    Article  Google Scholar 

  • Schumaker, B.L.: 1990. ‘Scientific Applications of Frequency-Stabilized Laser Technology in Space.’ Jet Propulsion Laboratory Pub. 90–50, Caltech, Pasadena. CA. pp. 133–146.

    Google Scholar 

  • Watkins, M.M., Folkner, W.M., Chao, B. and Tapley, B.D.: 2000, ‘EX-5: A laser interferometer follow-on to the GRACE mission,’ presented at GGG2000. Banff. Canada. 31 July - 5 August, 2000 (unpublished).

    Google Scholar 

  • Ye. J., Robertson, L., Picard, S., Ma, L.-S., and Hall, J. L.: 1999. “Absolute frequency atlas of molecular h lines al 532 nm,’ IEEE Trans. Instrum. Meas. 48, pp. 544–549.

    Google Scholar 

  • Ye. J., L.-S., Maland, J. L. Hall: 2001. ‘Molecular iodine clock,’ Phys. Rev. Leu. 87. pp. 270801/1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bender, P.L., Hall, J.L., Ye, J., Klipstein, W.M., Scientific Reports Office. (2003). Satellite-Satellite Laser Links for Future Gravity Missions. In: Beutler, G., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds) Earth Gravity Field from Space — From Sensors to Earth Sciences. Space Sciences Series of ISSI, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1333-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1333-7_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6334-2

  • Online ISBN: 978-94-017-1333-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics