Skip to main content

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

Abstract

Primary production by phytoplankton is the largest source of organic matter in the sea. Photosynthetically produced organic matter in the photic layer is transferred to higher and lower trophic levels through marine food webs. Organic matter in the surface water is also transported to the intermediate and deep waters, as well as to the sediment. As a consequence, organic matter plays a role in many biogeochemical processes in the water column, for example, the fueling of marine food webs and the control of the dynamics of other chemicals (by, for example, the regeneration of nutrients, the consumption of dissolved oxygen, and the scavenging of metals, radionuclides, pollutants, etc.), on the one hand, while, on the other hand, organic matter itself is transformed to detrital particulate organic matter (POM) and dissolved organic matter (DOM). The resultant detrital POM and DOM are also tightly coupled to the biogeochemical cycle in the marine system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman, J. W., E. Bentzen, E. R. Peele and J. B. Cotner (1994): Phosphorus cycling at the Bermuda time-series station: an overview. EOS, 75, 100.

    Google Scholar 

  • Amon, R. M. and R. Benner (1994): Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 369, 549–552.

    Google Scholar 

  • Amon, R. M. and R. Benner (1996): Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr., 41, 41–51.

    Google Scholar 

  • Andrew, A. T. (1986): Electrophoresis: Theory, Techniques, and Biochemical and Clinical Applications. 2nd ed. Clarendon, Oxford, 452 pp.

    Google Scholar 

  • Anfinsen, C. B. (1973): Principles that govern the folding of protein chains. Science, 181, 223–230.

    Google Scholar 

  • Anma, G., K. Masuda, G. Kobayashi, H. Yamaguchi, T. Meguro, S. Sasaki and K. Ohtani (1990): Oceanographic structures and changes around the transition domain along 180° longitude, during June 1979–1988. Bull. Fac. Fish. Hokkaido Univ.,41, 73–88.

    Google Scholar 

  • Armstrong, F. A. J., P. M. Williams and J. D. H. Strickland (1966): Photo-oxidation of organic matter in seawater by ultra-violet radiation, analytical and other applications. Nature, 211, 481–483.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad (1983): The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263.

    Google Scholar 

  • Ball, E. H. (1986): Quantitation of proteins by elution of Coomassie brilliant blue R from stained bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal. Biochem., 155, 23–27.

    Google Scholar 

  • Barber, R. T. (1968): Dissolved organic carbon from deep waters resists microbial oxidation. Nature, 220, 274–275.

    Google Scholar 

  • Bauer, J. E., P. M. Williams and E. R. M. Druffel (1992): 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature, 357, 667–670.

    Google Scholar 

  • Bender, M. L. and M. J. McPharden (1990): Anomalous nutrient distribution in the equatorial Pacific in April 1988: evidence for rapid biological uptake. Deep-Sea Res., 37, 1075–1084.

    Google Scholar 

  • Benner, R. J., J. D. Pakulski, M. D. McCarthy, J. I. Hedges and P. G. Hatcher (1992): Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255, 1561–1564.

    Google Scholar 

  • Benz, R. (1985): Porin from bacterial and mitochondrial outer membranes. CRC Crit. Rev. Biochem., 19, 145–190.

    Google Scholar 

  • Benz, R. and Hancock, R. E. W. (1981): Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Bioch. Biophys. Acta, 646, 298–308.

    Google Scholar 

  • Betzer, P. R., W. J. Showers, E. A. Laws, C. D. Winn, G. R. diTullio and P. M. Kroopnick (1984): Primary productivity and particule fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31, 1–1 1.

    Google Scholar 

  • Bianchi, T. S., C. Lambert, P. H. Santschi, M. Baskaran and L. Guo (1995): Plant pigments as biomarkers of high-molecular-weight dissolved organic carbon. Limnol. Oceanogr., 40, 42 2428.

    Google Scholar 

  • Billen, G. (1984): Heterotrophic utilization and regeneration of nitrogen. pp. 313–355. In Heterotrophic Activity in the Sea, ed. by J. E. Hobbie and P. J. leB. Williams, Plenum Press, New York.

    Google Scholar 

  • Billen, G. (1991): Protein degradation in aquatic environments. pp. 123–143. In Microbial Enzymes in Aquatic Environments, ed. by R. J. Chróst, Springer-Verlag, New York.

    Google Scholar 

  • Bird, D. F. and F. Kalff (1984): Empirical relationships between bacterial abundance and chloro-

    Google Scholar 

  • phyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci.,41, 1015–1023.

    Google Scholar 

  • Boon, J. J., W. I. C. Rijpstra, F. de Lange, J. W. de Leeuw, M. Yoshioka and Y. Shimizu (1979): black Sea sterol—a molecular fossil of dinoflagellate blooms. Nature, 277, 125–127.

    Google Scholar 

  • Bratbak, G., M. Heldal, S. Norland and T. F. Thingstad (1990): Viruses as partners in spring bloom microbial trophodynamics. Appl. Environ. Microbiol., 56, 1400–1405.

    Google Scholar 

  • Bratbak, G., M. Heldal, T. F. Thingstad, B. Riemann and O. H. Haslund (1992): Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar. Ecol. Prog. Ser., 83, 273280.

    Google Scholar 

  • Brock, T. D. and J. Clyne (1984): Significance of algal excretory products for growth of epilimnetic bacteria. Appl. Environ. Microbiol., 47, 731–734.

    Google Scholar 

  • Broecker, W. S. and T.-H. Peng (1982): Tracers in the Sea. Eldigo Press, New York, 690 pp. Brophy, J. E. and D. J. Carlson (1989): Production of biologically refrectory dissolved organic carbon by natural seawater microbial populations. Deep-Sea Res., 36, 497–507.

    Google Scholar 

  • Bruland, K. W. (1983): Trace elements in seawater. pp. 157–220. In Chemical Oceanography, Vol. 8, ed. by J. P. Riley and R. Chester, Academic Press, London.

    Google Scholar 

  • Carlson, D. J., L. M. Mayer, M. L. Brann and T. H. Mague (1985): Binding of monomeric organic compounds to macromolecular dissolved organic matter in seawater. Mar. Chem., 16, 141–153.

    Google Scholar 

  • Caron, D. A., H. G. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, J. M. Napp, E. R. Peele, M. R. Roman and M. J. Youngbluth (1995): The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res., 42, 943–972.

    Google Scholar 

  • Cauwet, G. (1978): Organic chemistry of seawater particulates. Concepts and developments. Oceanol. Acta, 1, 99–105.

    Google Scholar 

  • Chau, Y. K., R. Chuecas and J. P. Riley (1967): The component combined amino acids of some marine phytoplankton species. J. Mar. Biol. Ass. U.K., 47, 543–554.

    Google Scholar 

  • Chavez, F. P. and R. T. Barber (1987): An estimate of new production in the equatorial Pacific. Deep-Sea Res., 34, 1229–1243.

    Google Scholar 

  • Chavez, F. P., K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell and J. Newton (1995): On the chlorophyll a retention properties of glass-fiber GF/F filters. Limnol. Oceanogr., 40, 428–433.

    Google Scholar 

  • Cho, B. C. and F. Azam (1990): Biogeochemical significance of bacteria biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser., 63, 253–259.

    Google Scholar 

  • Chróst, R. J. (1991) (editor): Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. pp. 29–59. In Microbial Enzymes in Aquatic Environments,Springer-Verlag, New York.

    Google Scholar 

  • Clayton, J. R., Jr., Q. Dortch, S. S. Thoresen and S. I. Ahmed (1988): Evaluation of methods for the separation and analysis of proteins and free amino acids in phytoplankton samples. J. Plank. Res., 10, 341–358.

    Google Scholar 

  • Cleveland, D. W., S. G. Fischer, M. W. Kirschner and U. K. Laemmli (1977): Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoreisi. J. Biol. Chem., 252, 1102–1106.

    Google Scholar 

  • Coffin, R. G. (1989): Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr., 34, 531–542.

    Google Scholar 

  • Cole, J. J., G. E. Likens and D. L. Strayer (1982): Phtosynthetically produced dissolved organic

    Google Scholar 

  • carbon: an important source for planktonic bacteria. Limnol. Oceanogr.,27,1080–1090.

    Google Scholar 

  • Cole, J. J., S. Findlay and M. S. Pace (1988): Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43, 1–10.

    Google Scholar 

  • Cotner, J. B., E. R. Peele, J. W. Ammerman and E. Bentzen (1994): Phosphorus-limited plankton growth in the Sargasso Sea (BATS) and implication for the pelagic food web. EOS, 75, 75.

    Google Scholar 

  • Cowan, S. W., T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R. A. Pauptit, J. N. Jansonius and J. P. Rosenbusch (1992): Crystal structure explain functional properties of two E. coli porins. Nature, 358, 727–733.

    Google Scholar 

  • Cowey, C. B. and E. D. S. Corner (1963): On the nutrition and metabolism of zooplankton. 2. The relationship between the marine copepod Calanus helgolandicus and particulate material in Plymouth sea water. J. Mar. Biol. Ass. U.K., 43, 495–511.

    Google Scholar 

  • Cowie, G. L. and J. I. Hedges (1992): Sources and reactivities of amino acids in a coastal marine environment. Limnol. Oceanogr., 37, 703–724.

    Google Scholar 

  • Danilenko, A. F. (1977): Some results of protein analysis in Black Sea suspended matter. Oceanol., 17, 529–531.

    Google Scholar 

  • Decho, A. W. (1990): Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev., 28, 73–153.

    Google Scholar 

  • Degens, E. T. (1970): Molecular nature of nitrogenous compounds in seawater and recent marine sediments. pp. 77–106. In Organic Matter in Natural Waters, ed. by D. W. Hood, Univ. Alaska, Inst. Mar. Sci., Occasional Pub. No. 1.

    Google Scholar 

  • Dickson, M. L. and P. A. Wheeler (1993): Chlorophyll a concentrations in the North Pacific: Does a latitudinal gradient exist? Limnol. Oceanogr., 38, 1813–1818.

    Google Scholar 

  • Donnelly, S. F. H., M. J. Pockongton, D. Pallotta and E. Orr (1993): A proline-rich protein, verprolin, involved in cytoskeletal organization and cellular growth in the yeast Saccharomyces Cerevisiae. Mol. Microbial., 10, 585–596.

    Google Scholar 

  • Dortch, Q. and T. T. Packard (1989): Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep-Sea Res., 36, 223–240.

    Google Scholar 

  • Drapeau, G. R., Y. Boily and J. Houmard (1972): Purification and properties of an extracellular protease of Staphylococcus aureus. J. Biol. Chem., 247, 6720–6726.

    Google Scholar 

  • Druffel, E. R. M. and P. M. Williams (1990): Identification of a deep marine course of particulate organic carbon using bomb 14C. Nature, 347, 172–174.

    Google Scholar 

  • Druffel, E. R. M. and P. M. Williams (1992): Importance of isotope measurements in marine organic geochemistry. Mar. Chem., 39, 209–215.

    Google Scholar 

  • Ducklow, H. W. and C. A. Carlson (1992): Oceanic bacterial production. Adv. Microb. Ecol., 12, 113–181.

    Google Scholar 

  • Duursma, E. K. (1961): Dissolved organic carbon, nitrogen and phophorus in the sea. Nethl. J. Sea Res., 1, 1–148.

    Google Scholar 

  • Endermann, P., 1. Hindennach and U. Henning (1978): Major proteins of the Escherichia coli outer cell envelope membrane. Preliminary characterization of the phage ? receptor protein. FEBS Lett., 88, 71–74.

    Google Scholar 

  • Emerson, S., C. Stump, P. M. Grootes, M. Stuiver, G. W. Farwell and F. H. Schmidt (1987): Organic carbon in surface deep-sea sediments: C14 concentration. Nature, 329, 51–54.

    Google Scholar 

  • Eppley, R. W., W. G. Harrison, S. W. Chisholm and E. Stewart (1977): Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. J. Mar. Res., 35, 771–696.

    Google Scholar 

  • Farrington, J. W. (1992): Marine organic geochemistry: Review and challenges for the future. Mar. Chem., 39, 242 pp.

    Google Scholar 

  • Fish, W. W., J. A. Reynolds and C. Tanford (1970): Gel chromatography of protein in denaturing solvents. Comparison between sodium dodecyl sulfate and guanidine hydrochloride denaturants. J. Biol. Chem., 245, 5166–5168.

    Google Scholar 

  • Flood, P. R., D. Deibel and C. C. Morris (1992): Filtration of colloidal melanin from seawater by planktonic tunicates. Nature, 355, 630–632.

    Google Scholar 

  • Fournier, R. O. (1966): North Atlantic deep-sea fertility. Science, 153, 1250–1252.

    Google Scholar 

  • Freifelder, G (1987): Microbial Genetics. Jones and Bartlett Publishers, Boston.

    Google Scholar 

  • Fuhrman, J. A. (1992): Bacterioplankton roles in cycling of organic matter: the microbial food web. pp. 361–383. In Primary Production and Biogeochemical Cycles in the Sea, ed. by P. G. Falkowski and A. D. Woodhead, Pleunum Press, New York.

    Google Scholar 

  • Fuhrman, J. A. and R. T. Noble (1995): Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr., 40, 1236–1242.

    Google Scholar 

  • Fuhrman, J. A. and C. A. Suttle (1993): Viruses and marine planktonic systems. Oceanography, 6, 51–63.

    Google Scholar 

  • Fuhrman, J. A., T. D. Sleeter, C. A. Carlson and L. M. Proctor (1989): Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser., 57, 207–217.

    Google Scholar 

  • Gagosian, R. B. and C. Lee (1981): Processes controlling the distribution of biogenic organic compounds in seawater. pp. 91–123. In Marine Organic Chemistry, ed. by E. K. Duursma and R. Dawson, Elsevier Sci. Publ., Amsterdam.

    Google Scholar 

  • Garfield, P. C., T. T. Packard and L. A. Codispoti. (1979): Particulate protein in the Peru upwelling system. Deep-Sea Res., 26, 623–639.

    Google Scholar 

  • Garrison, D. L., K. R. Buck and M. M. Gowing (1993): Winter plankton assemblage in the ice edge zone of the Weddell and Scotia Seas: composition, biomass and spatial distribution. Deep-Sea Res., 40, 311–338.

    Google Scholar 

  • Giovannoni, S. J., T. B. Britschgi, C. L. Moyer and K. G. Field (1990): Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63.

    Google Scholar 

  • Gonzalez, J. M. and C. A. Suttle (1993): Grazing by marine nanaflagellates on viruses and virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser., 94, 1–10.

    Google Scholar 

  • Gordon, D. C., Jr. (1970): A microscopic study of organic particles in the North Atlantic Ocean. Deep-Sea Res., 17, 175–185.

    Google Scholar 

  • Gordon, D. C., Jr. and P. J. Cranford (1985): Detailed distribution of dissolved and particulate organic matter in the Arctic Ocean and comparison with other oceanic regions. Deep-Sea Res., 32, 1221–1232.

    Google Scholar 

  • Gottschalk, G. (1986): Bacterial Metabolism. 2nd ed. Springer-Verlag, New York, 359 pp.

    Google Scholar 

  • Guo, L., C. H. Coleman, Jr. and P. H. Santschi (1994): The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem., 45, 105–119.

    Google Scholar 

  • Guo, L., P. H. Santschi and K. W. Warnken (1995): Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr., 40, 1392–1403.

    Google Scholar 

  • Haas, L. W. and K. L. Webb (1979): Nutritional mode of several non-pigmented microflagellates from the York River estuary, Virginia. J. Exp. Mar. Biol. Ecol., 39, 125–134.

    Google Scholar 

  • Hancock, R. E. W. (1986): Model membrane studies of porin function. pp. 187–225. In Bacterial Outer Membranes as Model Systems, ed. by M. Inoue, John Willey and Sons, New York. Hancock, R. E. W. (1987): Role of porins in outer membrane permeability. J. Bacterial., 169, 929–933.

    Google Scholar 

  • Hancock, R. E. W. and R. Benz (1986): Demonstration and chemical modification of a specific phosphate binding site in the phosphate-starvation-inducible outer membrane porin protein P of Pseudomonas aeruginosa. Biochim. Biophys. Acta, 860, 699–707.

    Google Scholar 

  • Hancock, R. E. W., K. Poole and R. Benz (1982): Outer membrane protein P of Pseudomonas aeruginosa.: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membrane. J. Bacterial., 150, 730–738.

    Google Scholar 

  • Hancock, R. E. W., C. Egli, R. Benz and R. J. Siehnel (1992): Overexpression in Escherichia coli and functional analysis of a novel PPi selective porin, OprO, from Pseudomonas aeruginosa. J. Bacterial., 174, 471–476.

    Google Scholar 

  • Handa, N. (1970): Dissolved and particulate carbohydrates. pp. 128–152. In Organic Matter in Natural Waters, ed. by D. W. Hood, Univ. Alaska, Inst. Mar. Sci., Occasional Publ. No. 1.

    Google Scholar 

  • Handa, N., K. Yanagi and K. Matsunaga. (1972): Distribution of detrital materials in the Western Pacific Ocean and their biochemical nature. pp. 53–71. In Detritus and Its Role in Aquatic Ecosystems, ed. Handa, N., K. Yanagi and K. Matsunaga, 29 ( Suppl.).

    Google Scholar 

  • Hara, S. and I. Koike (1998): Dynamics of organic marine aggregates; Nanometer-colloids to marine snow. This volume.

    Google Scholar 

  • Hara, S., I. Koike, K. Terauchi, H. Kamiya and E. Tanoue (1996): Abundant viruses in deep oceanic waters. Mar. Ecol. Prog. Ser., 145, 269–277.

    Google Scholar 

  • Harradine, P. J., P. G. Harris, R. N. Head, R. P. Harris and J. R. Maxwell (1996): Steryl chlorin esters are formed by zooplankton herbivory. Geochim. Cosmochim. Acta, 60, 2265–2270.

    Google Scholar 

  • Haschemeyer, R. H. and E. V. Haschemeyer (1973): Proteins: A Guide to Study by Physical and Chemical Methods. John Willey and Sons, New York, 445 pp.

    Google Scholar 

  • Hedges, J. I. (1987): Organic matter in sea water. Nature, 330, 205–206.

    Google Scholar 

  • Hedges, J. L (1992): Global biogeochemical cycles: progress and problem. Mar. Chem., 39, 67–93.

    Google Scholar 

  • Hedges, J. I. and P. L. Parker (1976): Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta, 40, 1019–1029.

    Google Scholar 

  • Heissenberger, A. and G. J. Hemdl (1994): Formation of high molecular weight material by free-living marine bacteria. Mar. Ecol. Prog. Ser., 111, 129–135.

    Google Scholar 

  • Helelnius, A. and K. Simon (1975): Solubilization of membranes by detergent. Biochim. Biophys. Acta, 415, 29–79.

    Google Scholar 

  • Henrichs, S. M. and P. M. Williams (1985): Dissolved and particulate amino acids and carbohydrates in the sea-surface microlayer. Mar. Chem., 17, 141–163.

    Google Scholar 

  • Hirose, K. (1996): Determination of a strong organic ligand dissolved in seawater, thoriumcomplexing capacity of oceanic dissolved organic matter. J. Radioanal. Nucl. Chem., Articles, 204, 193204.

    Google Scholar 

  • Hirose, K. (1998): Strong organic ligands in seawater: Peculiar functional group in oceanic organic matter. This volume.

    Google Scholar 

  • Hirose, K. and E. Tanoue (1994): Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: thery. Geochim. Cosmochim. Acta, 58, 1–7.

    Google Scholar 

  • Hirose, K. and E. Tanoue (1998a): The vertical distribution of Thorium-complexing capacity in particulate matter: Implication with respect to the dynamics of particulate matter in oceanic water columns. Mar. Chem., 59, 235–252.

    Google Scholar 

  • Hirose, K. and E. Tanoue (1998b): The strong organic ligand in marine organisms. Fresenius J. Anal. Chem. (in press).

    Google Scholar 

  • Hirose, K. and E. Tanoue (1998c): Characteristics of the strong organic ligand in particulate matter of Pacific surface waters (submitted).

    Google Scholar 

  • Hollibaugh, J. T. and F. Azam (1983): Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr., 28, 1104–1116.

    Google Scholar 

  • Holm-Hansen, O. (1969): Determination of microbial biomass in ocean profiles. Limnol. Oceanogr., 14, 740–747.

    Google Scholar 

  • Houmard, J. and G. R. Drapeau (1972): Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc. Natl. Acad. Sci. USA, 69, 3506–3509.

    Google Scholar 

  • Hubberten, U., R. J. Lara and G. Kattner (1994): Amino acid composition of seawater and dissolved humic substances in the Greenland Sea. Mar. Chem., 45, 121–128.

    Google Scholar 

  • Ishii, M. and H. Y. Inoue (1995): Air-sea exchange of CO, in the central and western equatorial Pacific in 1990. Tellus, 47B, 447–460.

    Google Scholar 

  • Ishiwatari, R. (1992): Macromolecular material (humic substance) in the water column and sediments. Mar. Chem., 39, 151–166.

    Google Scholar 

  • Ishizaka, J., H. Kiyosawa, K. Ishida, K. Ishikawa and M. Takahashi (1994): Meridional distribution and carbon biomass of autotrophic picoplankton in the Central North Pacific Ocean during Late Norhtern Summer 1990. Deep-Sea Res., 41, 1745–1766.

    Google Scholar 

  • Johnson, M. W. and E. Brinton (1963): Biological species, water-masses and currents. pp. 381–414. In The Sea, ed. by M. N. Hill, Vol. 2, John Wiley and Sons, New York.

    Google Scholar 

  • Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry and B. W. Frost (1989): Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and adsorption in animals. Deep-Sea Res., 36, 483–495.

    Google Scholar 

  • Kalle, K. (1966): The problem of Gelbstoff in the sea. Oceanogr. Mar. Biol. Anna. Res., 4, 91–104. Kawai, H. (1972): Hydrography of the Kuroshio extension. pp. 235–352. In KUROSHIO—It Physical Aspects, ed. by H. Stommel and K. Yoshida, Univ. Tokyo Press, Tokyo.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman. (1991): Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Mar. Chem., 33, 243–259.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1993): Dissolved combined amino acids: chemical form and utilizationbymarinebacteria. Limnol. Oceanogr., 38, 1256–1270.

    Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1994): Abiotic transformation of labile protein to refractory protein in sea water. Mar. Chem., 45, 187–196.

    Google Scholar 

  • Kirchman, D. L., R. G. Keil, M. Simon and N. A. Welschmeyer (1993): Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res., 40, 967–988.

    Google Scholar 

  • Kirchman, D. L., J. H. Rich and R. T. Barber (1995): Biomass and biomass production of heterotrophic bacteria along 140 in the equatorial Pacific: Effect of temperature on the microbialloop. Deep-Sea Res., 42, 603–619.

    Google Scholar 

  • Kogure, K., U. Shimidu and N. Taga (1979): A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol., 25, 415–420.

    Google Scholar 

  • Koike, I., S. Hara, K. Terauchi and K. Kogure (1990): The role of submicrometre particles in the ocean. Nature, 345, 242–244.

    Google Scholar 

  • Kokjohn, T. A., G. S. Sayler and R. V. Miller (1991): Attachment and replication of Pseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. J. Gen. Microbiol., 137, 661–666.

    Google Scholar 

  • Laemmli, U. K. (1970): Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Google Scholar 

  • Largeau, C. (1995): Formation of refractory organic matter from biological precursors. pp. 275–292. In Role of Nonliving Organic Matter in the Earth’s Carbon Cycle, ed. by R. G. Zepp and C. H. Sonntag, John Wiley and Sons, Chichester.

    Google Scholar 

  • Largeau, C., S. Derenne, E. Casadevali, A. Kadouri and N. Sellier (1986): Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of Error! Hyperlink reference not valid.. Geochem., 10, 1023–1032.

    Google Scholar 

  • Largeau, C., S. Derenne, C. Clairay, E. Casadevali, J. F. Raynaud, B. Lugardon, C. Berkaloff, M. Corolleur and B. Rousseau (1991): Characterization of various kerogens by scanning electrom microscopy (SEM) and transmission electron microscopy (TEM), Morphological relationships with resistant outer walls in extant microorganisms. pp. 91–101. In Proceedings Intl. Sympo. Organic Petrology, Zeist 1990, ed. by W. J. J. Fermont and J. W. Weegink, Geological Survey Netherlands, Special Issue.

    Google Scholar 

  • Laursen, A. K., L. M. Mayer and D. W. Townsend (1996): Lability of proteinaceous material in estuarine seston and subcellular fractions of phytoplankton. Mar. Ecol. Prog. Ser., 136, 227–234.

    Google Scholar 

  • Lee, C. and J. Bada (1975): Amino acids in Equatorial Pacific ocean water. Earth Planet. Sci. Lett., 26, 61–68.

    Google Scholar 

  • Lee, C. and J. Bada (1977): Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol. Oceanogr., 22, 502–510.

    Google Scholar 

  • Lee, C. and C. Cronin (1984): Particulate amino acids in the sea: effects of primary productivity and biological decomposition. J. Mar. Res., 42, 1075–1097.

    Google Scholar 

  • Lee, C. and S. G. Wakeham (1989): Organic matter in seawater: biogeochemical processes. pp. 2–51. In Chemical Oceanography. Vol. 9, ed. by J. P. Riley, Academic Press, New York.

    Google Scholar 

  • Lee, C., S. G. Wakeham and J. W. Farrington (1983): Variations in the composition of particulate organic matter in a time-series sediment trap. Mar. Chem., 13, 181–194.

    Google Scholar 

  • Lee, S. and J. A. Fuhrman (1987): Relationships between biovolume and biomass of naturally derived marine bacterioplankton. App. Environm. Microbiol., 53, 1298–1303.

    Google Scholar 

  • Li, W. K. W., P. M. Dickie, B. D. Irwin and A. M. Wood (1992): Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep-Sea Res., 39, 501–

    Google Scholar 

  • Liebezeit, G. and M. Bölter (1986): Distribution of particulate amino acids in the Bransfield Strait. Polar Biol., 5, 199–206.

    Google Scholar 

  • Long, R. A. and F. Azam (1996): Abundance protein-containing particles in the sea. Aquas. Microbial Ecol., 10, 213–221.

    Google Scholar 

  • Lucky, M. and H. Nikaido (1980): Specificity of diffusion channels produced by A phage receptor protein of Escherichia coli. Proc. Natl. Acad. Sci. USA, 77, 167–171.

    Google Scholar 

  • Lugtenberg, B. and L. V. Alphen (1983): Molelcular architecture and functioning of the outer membrane of Escherichia coli and other Gram negative bacteria. Biochim. Biophys. Acta, 737, 51–115.

    Google Scholar 

  • Maier, C., E. Bremer, A. Schmidt and R. Benz (1988): Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. J. Biol. Chem., 263, 2493–2499.

    Google Scholar 

  • Malinsky-Rushansky, N. Z. and C. Legrand (1996): Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Mar. Ecol. Prog. Ser., 132, 249–255.

    Google Scholar 

  • Mantoura, R. F. C. and E. M. S. Woodward (1983): Concervative behavior of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta, 47, 1293–1309.

    Google Scholar 

  • Maranger, R. and D. F. Bird (1995): Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar. Ecol. Prog. Ser., 121, 217–226.

    Google Scholar 

  • Marchant, H. J. and F. J. Scott (1993): Uptake of sub-micrometer particles and dissolved organic material by Antarctic choanoflagellates. Mar. Ecol. Prog. Ser., 92, 59–64.

    Google Scholar 

  • Marlowe, 1. T., S. C. Brassell, G. Eglinton and J. C. Green (1990): Long-chain alkenones and alkyl alkenoates and the fossil coccolith record in marine sediments. Chem. Geol., 88, 349–375.

    Google Scholar 

  • Martinez, J. and Azam, F. (1993): Periplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: implications for substrate processing in the sea. Mar. Ecol. Prog. Ser., 92, 89–97.

    Google Scholar 

  • Masuzawa, J. (1972): Water characteristics of the North Pacific central region. pp. 95–127. In KUROSHIO—its Physical Aspects, ed. by H. Stommel and K. Yoshida, Univ. Tokyo Press, Tokyo.

    Google Scholar 

  • Matsudaira, P. (1987): Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem., 262, 10035–10038.

    Google Scholar 

  • Mayer, L. M., L. L. Schick and F. W. Setchel (1986): Measurement of protein in nearshore marine sediments. Mar. Ecol. Prog. Ser., 30, 159–165.

    Google Scholar 

  • Mayer, L. M., L. L. Schick, T. Sawyer and C. J. Plante (1995): Bioavailable amino acids in sediments: A biomimetic, kinetics-based approach. Limnol. Oceanogr., 40, 511–520.

    Google Scholar 

  • Mayzaud, P. and J.-L. M. Martin (1975): Some aspects of the biochemical and mineral composition of marine plankton. J. Exp. Mar. Biol. Ecol., 17, 297–310.

    Google Scholar 

  • McCarthy, M., J. I. Hedges and R. Benner (1995): Geochemistry of high molecular weight dissolved organic matter in the sea as implied by amino acids and organic nitrogen. pp. 1150–1152. In Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History, selected papers from the 17th International Meeting on Organic Geochemistry, ed. by J. O. Grimait and C. Doronsoro, A.I.G.O.A., The Basque Country, Spain.

    Google Scholar 

  • McGowan, J. A. and P. M. Williams (1973): Oceanic habitat differences in the North Pacific. J. Exp. Mar. Biol. Ecol., 12, 187–217.

    Google Scholar 

  • McManus, G. B. and J. A. Fuhrman (1988): Control of marine bacterioplankton population: measurement and significance of grazing. Hydrobiologia, 159, 51–62.

    Google Scholar 

  • Mel’nikov, I. A. (1974): Use of histochemical reagents to determine the biochemical composition of detritus. Oceanol., 14, 922–926.

    Google Scholar 

  • Menzel, D. W. (1974): Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter. pp. 659–678. In The Sea, Vol. 5, ed. by E. D. Goldberg, WileyIntersci. Publ., New York.

    Google Scholar 

  • Menzel, D. W. and J. H. Ryther (1970): Distribution and cycling of organic in the oceans. pp. 3154. In Organic Matter in Natural Waters, ed. by D. W. Hood, Inst. Mar. Sci., Univ. Alaska, Pub.

    Google Scholar 

  • Menzel, D. W. and R. F. Vaccaro (1964): The measurement of dissolved organic and particulatecarboninseawater. Limnol. Oceanogr., 9, 138–142.

    Google Scholar 

  • Meybeck, M. (1982): Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci., 282, 401–450.

    Google Scholar 

  • Meyer-Schulte, K. and J. I. Hedges (1986): Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature, 321, 61–63.

    Google Scholar 

  • Mopper, K. and E. T. Degens (1979): Organic carbon in the ocean: nature and cycling. pp. 293–316. In The Global Carbon Cycle, ed. by B. Bolin, E. T. Degens, S. Kempe and P. Ketner, SCOPE report 13, John Wiley and Sons, Chichester.

    Google Scholar 

  • Morita, J., S. Suzuki and R. Kusuda (1996): Metalloprotease produced by Listonella anguillarum shows similar activity to plasma activated protein C in rainbow trout coagulation cascade. Fish Pathol., 31, 9–17.

    Google Scholar 

  • Nagata, T. (1995): Preliminary report of the Hakuho Maru Cruise KH95–3. Ocean Res. Institute, Univ. Tokyo, 84 pp.

    Google Scholar 

  • Nagata, T. (1998): “Picopellets” produced by phagotrophic nanoflagellates: Role in the material cycling within marine environments. This volume.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1992): Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser., 83, 233–240.

    Google Scholar 

  • Nagata, T. and I. Koike (1995): Marine colloids: Their roles in food webs and biogeochemical fluxes. pp. 275–292. In Biogeochemical Processes and Ocean Flux in the Western Pacific, ed. by H. Sakai and Y. Nozaki, Terra Sci. Publ., Tokyo.

    Google Scholar 

  • Nakae, T. (1979): A porin activity of purified A-receptor protein from Escherichia coli in reconstituted vesicle membranes. Biochem. Biophys. Res. Commun., 88, 774–781.

    Google Scholar 

  • Nemoto, T. and K. Ishikawa (1969): Organic particulate and aggregate matters stained by histological reagents in the East China Sea. J. Oceanogr. Soc. Japan, 25, 281–290.

    Google Scholar 

  • Neville, D. W. (1971): Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem., 246, 6328–6334.

    Google Scholar 

  • Nguyen, R. and H. R. Harvey (1994): A rapid micro-scale method for the extraction and analysis of protein in marine samples. Mar. Chem., 45, 1–14.

    Google Scholar 

  • Nikaido, H. (1994): Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem., 269, 3905–3908.

    Google Scholar 

  • Nikaido, H. and M. Vaara (1985): Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 49, 1–32.

    Google Scholar 

  • Nozaki, Y. (1992): Trace elements in sea water: Their mean concentrations and North Pacific profiles. Chikyukagaku (Geochemistry), 26, 25–39 (in Japanese with English abstract).

    Google Scholar 

  • Oakley, B. R., D. R. Kirsch and N. R. Morris (1980): A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem., 105, 361–363.

    Google Scholar 

  • O’Farrell, P. H. (1975): High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250, 4007–4021.

    Google Scholar 

  • Ogawa H. (1998): Bulk chemical aspects of dissolved organic matter in seawater. This volume. Ogunseitan, O. A., G. S. Sayler and R. V. Miller (1990): Dynamic imteractions of Pseudomonas aeruginosa and bacteriophages in lake water. Microb. Ecol., 19, 171–185.

    Google Scholar 

  • Pace, M. L. (1988): Bacterial mortality and the fate of bacterial production. Hydrobiologia, 159, 4149.

    Google Scholar 

  • Packard, T. T. and Q. Dortch (1975): Particulate protein-nitrogen in North Atlantic surface water. Mar. Biol., 33, 347–354.

    Google Scholar 

  • Palleroni, N. J. (1992): Introduction to the family Pseudomonadaceae. pp. 3071–3085. In The ProKaryotes, ed. by A. Balows, H. G. Truper, M. Dworkin, W. Harder and K. H. Schleifer, Springer-Verlag, Berlin.

    Google Scholar 

  • Pak, H., D. A. Kiefer and J. C. Kitchen (1988): Meridional variations in the concentration of chlorophyll and microparticles in the North Pacific Ocean. Deep-Sea Res., 35, 1151–1171.

    Google Scholar 

  • Parsons, T. R. and J. D. H. Strickland (1962): Oceanicdetritus. Science, 136, 313–314.

    Google Scholar 

  • Patterson, D. J., K. Nygaard, G. Steinberg and C. M. Turley (1993): Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Ass. U.K., 73, 67–95.

    Google Scholar 

  • Philander, S. G. (1990): El Nino, La Nina, and the Southern Oscillation, Academic Press, San Diego, 293 pp.

    Google Scholar 

  • Pitt-Rivers, R and F. S. A. Impiombato (1968): The binding of sodium dodecyl sulphate to various proteins. Biochem. J., 109, 825–830.

    Google Scholar 

  • Pomeroy, L. R. (1974): The ocean’s food web: A changing paradigm. BioScience, 24, 499–504.

    Google Scholar 

  • Pomeroy, L. R., J. E. Sheldon, W. M. Sheldon and F. Peters, Jr. (1995): Limits to growth and respiration of hacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser., 117, 259–268.

    Google Scholar 

  • Poole, K. and R. E. W. Hancock (1986): Phosphate-starvation-induced outer membrane proteins of members of the Families Enterobacteriaceae and Pseudomonaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P of Pseudomonas aeruginosa. J. Bacteriol., 165, 987–993.

    Google Scholar 

  • Poole, K., T. R. Parr, Jr. and R. E. W. Hancock (1987): Phosphate-selective porins from the outer membranes of fluorescent Pseudomonas sp. Can. J. Miocrobiol., 33, 63–69.

    Google Scholar 

  • Porter, K. G. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace and R. W. Sanders (1985): Protozoa in planktonic food webs. J. Protozool., 32, 409–415.

    Google Scholar 

  • Prahl, F. G. (1992): Prospective use of molecular paleontology to test for iron limitation on marine promary productivity. Mar. Chem., 39, 167–185.

    Google Scholar 

  • Quinby-Hunt, M. S. and K. K. Turekian (1983): Distribution of elements in sea water. EOS, 64 (14), 130–132.

    Google Scholar 

  • Rashid, M. A. (1985): Geochemistry of Marine Humic Compounds. Springer-Verlag, New York, 300 pp.

    Google Scholar 

  • Rath, J., C. Schiller and G. J. Herndle (1993): Ectoenzymatic activity and bacterial dynamics along a trophic gradient in the Caribbean Sea. Mur. Ecol. Progr. Ser., 102, 89–96.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richard (1963): The influence of organisms of the composition of sea-water. pp. 26–87. In The Sea, ed. by M. N. Hill, Vol. 2, John Wiley and Sons, New York.

    Google Scholar 

  • Repeta, D. J. and R. B. Gagosian (1982): Carotenoid transformations in coastal marine waters. Nature, 295, 51–54.

    Google Scholar 

  • Repeta, D. J. and R. B. Gagosian (1984): Transformation reactions and recycling of carotenoids and chlorins in the Peru upwelling region (15°S, 75°W). Geochim. Cosmochim. Acta, 48, 1265 1277.

    Google Scholar 

  • Reynolds, J. A. and C. Tanford (1970a): Binding of dodecyl sulphate to protein at high binding ratios. Possible implications for the state of proteins in biological membrane. Proc. Natl. Acad. Sci. USA, 66, 1002–1007.

    Google Scholar 

  • Reynolds, J. A. and C. Tanford (1970b): The gross conformation of protein-sodium dodecyl sulfate complexes. J. Biol. Chem., 245, 5161–5165.

    Google Scholar 

  • Riley, G. A. (1970): Particulate organic matter in sea water. Adv. Mar. Biol., 8, 1–118. Romankevich, E. A. (1984): Geochemistry of Organic Matter in the Ocean. Springer-Verlag, Berlin, 334 pp.

    Google Scholar 

  • Rosenbusch, J. P. (1974): Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J. Biol. Chem., 249, 8019–8029.

    Google Scholar 

  • Roszak, D. B. and R. R. Colwell (1987): Survival strategies of bacteria in the natural environment. Microbiol. Rev., 51, 365–373.

    Google Scholar 

  • Sakugawa, H. and N. Handa (1985a): Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay. Geochim. Cosmochim. Acta, 49, 1185–1193.

    Google Scholar 

  • Sakugawa, H. and N. Handa (1985b): Chemical studies on dissolved carbohydrates in the water samples collected from the North Pacific and Bering Sea. Oceanol. Acta, 8, 185–196.

    Google Scholar 

  • Santschi, P. H., L. Guo, M. Baskaran, S. Trumbore, J. Southon, T. S. Bianchi, B. Honeyman and L.

    Google Scholar 

  • Cifuentes (1995): Isotopic evidence for the contemporary origin of high-molecular-weight organic matter in oceanic environments. Geochim. Cosmochim. Acta, 59, 625–631.

    Google Scholar 

  • Schulein, K., A. Schmidt and R. Benz (1991): The sugar-specific outer membrane channel ScrY constains functional characteristics of general diffusion pores and substrate-specific porins. Mol. Microbiol., 5, 2233–2241.

    Google Scholar 

  • Schmidt, T. M., E. F. DeLong and N. R. Pace (1991): Analysis of a marine picoplankton community by 165 rRNA gene cloning and sequencing. J. Bacteriol., 173, 4371–4378.

    Google Scholar 

  • Setchell, F. W. (1981): Particulate protein measurement in oceanographic samples by dye binding. Mar. Chem., 10, 301–313.

    Google Scholar 

  • Shapiro, A. L., E. Vinuela and J. V. Maize!, Jr. (1967): Molecular weight estimation of polypeptide chain by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun., 28, 815–820.

    Google Scholar 

  • Sharp, J. H. (1983): The distributions of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. pp. 1–35. In Nitrogen in the Marine Environments, ed. by E. J. Carpenter and D. G. Capone, Academic Press, New York

    Google Scholar 

  • Sherr, E. B. (1988): Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature, 335, 348–351.

    Google Scholar 

  • Sieburth, J. McN. (1979): Sea Microbes. Oxford Univ. Press, Oxford, 491 pp.

    Google Scholar 

  • Siehnel, R., N. L. Martin and R. E. W. Hancock (1990): Sequence and relatedness in other bacteria of the Pseudomonas aeruginosa oprP gene coding for the phosphate-specific porin P. Mol. Microbiol., 4, 831–838.

    Google Scholar 

  • Siehnel, R., C. Egli and R. E. W., Hancock (1992): Polyphosphate-selective porin OpO of Pseudomonas aeruginosa: expression, purification and sequence. Mol. Microbiol., 6, 2319–2326.

    Google Scholar 

  • Siezen, R. J. and T. H. Mague (1978): Amino acids in suspended particulate matter from oceanic and coastal waters of the Pacific. Mar. Chem., 6, 215–231.

    Google Scholar 

  • Simon, M., B. C. Cho and F. Azam (1992): Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser., 86, 103–110.

    Google Scholar 

  • Skopintsev, B. (1972): On the age of stable organic matter-aquatic humus in oceanic waters. pp. 205207. In The Changing Chemistry of the Oceans, ed. by D. Dryssen and D. Jagner, Proceedings of the 12th Nobel Symposium, 1971, Goteborg, Sweden, John Wiley and Sons, New York.

    Google Scholar 

  • Smith, D. C., M. Simon, A. L. Alldredge and F. Azam (1992): Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.

    Google Scholar 

  • Strickland, J. D. H. (1965): Production of organic matter at the primary stages of the marine food chain. pp. 477–610. In Chemical Oceanography, Vol. 1, ed, by J. P. Riley and G, Skirrow, Academic Press, New York.

    Google Scholar 

  • Stuermer, D. H. and G. R. Harvey (1974): Humic substances from seawater. Nature, 250, 480–481.

    Google Scholar 

  • Stuermer, D. H. and G. R. Harvey (1977): The isolation of humic substances and alcoholsoluble organic matter from seawater. Deep-Sea Res., 24, 303–309.

    Google Scholar 

  • Stuermer, D. H. and J. R. Payne (1976): Investigation of seawater and terrestrial humic substances with carbon-13 and proton nuclear magnetic resonance. Geochim. Cosmochim. Acta, 40, 1109 1114.

    Google Scholar 

  • Suzuki, S., K. Kuroe and R. Kusuda (1993): Characteristics of porin-like major outer membrane proteins of Listonella anguillara serotypes J-O-I, -2 and -3. Biochem. Mol. /nt., 32, 605–613.

    Google Scholar 

  • Suzuki, S., K. Kuroe, K. Yasue and R. Kusuda (1996): Antigenicity and N-terminal amino acid sequence of a 35 kDa porin-like protein of Listonella (Vibrio) anguillarum: Comparison among different serotypes and other bacterial species. Leu. Appl. Microbiol., 23, 257–260.

    Google Scholar 

  • Suzuki, S., K. Kogure and E. Tanoue (1997): Immunochemical detection of dissolved proteins and heir source organisms. Mar. Ecol. Prog. Ser., 158, 1–9.

    Google Scholar 

  • Tanoue, E. (1985): Distribution and chemical composition of particulate organic matter in the Pacific sector of the Antarctic Ocean. Trans. Tokyo Univ. Fish., 6, 43–57.

    Google Scholar 

  • Tanoue, E. (1991): Electrophoretic separation of particulate proteins in seawater. pp. 163–169. In Marine Particles: Analysis and Characterization, ed. by D. C. Hurd and D. W. Spencer, American Geophysical Union, Geophys. Monogr., 63, Washington, D.C.

    Google Scholar 

  • Tanoue, E. (1992): Occurrence and characterization of particulate proteins in the Pacific Ocean. Deep-Sea Res., 39, 743–761.

    Google Scholar 

  • Tanoue, E. (1993): Distributional characteristics of DOC in the Central Equatorial Pacific. J. Oceanogr., 49, 625–639.

    Google Scholar 

  • Tanoue, E. (1995): Detection of dissolved protein molecules in oceanic waters. Mar. Chem., 51, 239–252.

    Google Scholar 

  • Tanoue, E. (1996): Characterization of the particulate protein in Pacific surface waters. J. Mar. Res., 54, 967–990.

    Google Scholar 

  • Tanoue, E. and N. Handa (1979): Distribution of particulate organic carbon and nitrogen in the Bering Sea and northern North Pacific Ocean. J. Oceanogr. Soc. Japan, 35, 47–69.

    Google Scholar 

  • Tanoue, E. and S. Hara (1986): Ecological implications of faecal pellets produced by the Antarctic krill Euphausia superba in the Antarctic Ocean. Mar. Biol., 91, 359–369.

    Google Scholar 

  • Tanoue, E., N. Handa and M. Kato (1982): Horizontal and vertical distributions of particulate organic matter in the Pacific sector of the Antarctic Ocean. Trans. Tokyo Univ. Fish., 5, 65–83.

    Google Scholar 

  • Tanoue, E., S. Nishiyama, M. Kamo and A. Tsugita (1995): Bacterial membranes: Possible source of a major dissolved protein in seawater. Geochim. Cosmochim. Acta, 59, 2643–2648.

    Google Scholar 

  • Tanoue, E., M. Ishii and T. Midorikawa (1996): Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr., 41, 1334–1343.

    Google Scholar 

  • Tegelaar, E. W., J. W. deLeeuw, S. Derenne and C. Largeau (1989): A reappraisal of kerogen formation. Geochim. Cosmochim. Acta, 53, 3103–3106.

    Google Scholar 

  • Thomas, W. H. (1979): Anomalous nutrient-chlorophyll interrelationships in the offshore eastern tropical Pacific Ocean. J. Mar. Res., 37, 327–335.

    Google Scholar 

  • Thurman, E. M. (1985): Organic Geochemistry of Natural Waters. W. Junk, Boston, 497 pp. Towbin, H., T. Staehelin and J. Gordon (1979): Electrophoretic transfer of proteins from polyacryl-amide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76, 4350–4354.

    Google Scholar 

  • Tranvik, L. J. (1994): Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy. Appl. Environ. Microbiol., 60, 1884–1888.

    Google Scholar 

  • Tranvik, L. J., E. B. Sherr and B. F. Sherr (1993): Uptake and utilization of “colloidal DOM” by heterotrophic flagellates in seawater. Mar. Ecol. Prog. Ser., 92, 301–309.

    Google Scholar 

  • Trias, J. and H. Nikaido (1990): Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem., 265, 15680–15684.

    Google Scholar 

  • Trias, J., E. Y. Rosenberg and H. Nikaido (1988): Specificity of the glucose channel formed by protein DI of Pseudomonas aeruginosa. Bioch. Biophys. Acta, 938, 493–496.

    Google Scholar 

  • Tupas, L. and 1. Koike (1990): Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater. Limnol. Oceanogr., 35, 1145–1155.

    Google Scholar 

  • Udenfriend, S., S. Stein, P. Bohlen, W. Dairman, W. Leimgraber and M. Weigle (1972): Fluorescamine: a reagent for assay of amino acids, peptides, protein and primary amines in the picomole range. Science, 178, 871–872.

    Google Scholar 

  • Volkman, J. K. (1986): A review of sterol markers for marine and terrigenous organic Error! Hyperlink reference not valid.. Geochem., 9, 83–99.

    Google Scholar 

  • Wakeham, S. G. (1995): Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water column of the ocean. Deep-Sea Res., 42, 1749–1771.

    Google Scholar 

  • Walker, J. E. and I. M. Fearnley (1986): Sequence analysis of membrane proteins. pp. 243. In Techniques for the Analysis of Membrane Proteins, ed. by C. I. Ragan and R. J. Cherry, Chapman and Hall, London.

    Google Scholar 

  • Wiggins, B. A. and M. Alexander (1985): Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. Environ. Microbiol., 49, 19–23.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1987): Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330, 247–248.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel. (1988): Dissolved organic matter in the ocean: comments on a controversy. Oceanography, 1, 14–17.

    Google Scholar 

  • Williams, P. M. and L. I. Gordon (1970): Carbon-13: carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res., 17, 19–27.

    Google Scholar 

  • Williams, P. M., K. J. Robertson, A. Soutar, S. M. Griffin and E. R. M. Druffel (1992): Isotopic signatures (14C, 13C, 15N) as tracers of sources and cycling of soluble and particulate organic matter in the Santa Monica Basin, California. Prog. Oceanogr., 30, 253–290.

    Google Scholar 

  • Worobec, E. A., N. L. Martin, W. D. McCubbin, C. M. Kay, G. D. Brayer and R. E. W. Hancock (1988): Large-scale purification and biochemical characterization of crystallization-grade porin protein P from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 939, 366–374.

    Google Scholar 

  • Wyrtki, K. and B. Kilonsky (1984): Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 14, 242–254.

    Google Scholar 

  • Yanada, M. and Y. Maita (1995): Regional and seasonal variations of biomass and biomediated materials in the North Pacific Ocean. pp. 293–306. In Biogeochemical Processes and Ocean Flux in the Western Pacific, ed. by H. Sakai and Y. Nozaki, Terra Sci. Publ., Tokyo.

    Google Scholar 

  • Yoshihara, E., N. Gotoh, T. Nishino and T. Nakae (1996): Protein D2 porin of the Pseudomonas aeruginosa outer membrane bears the protease activity. FEBS Lett., 394, 179–182.

    Google Scholar 

  • Zalman, L. S., H. Nikaido and Y. Kagawa (1980): Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J. Biol. Chem., 255, 1771–1774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tanoue, E. (2000). Proteins in the Sea — Synthesis. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics