Skip to main content

Strong Organic Ligands in Seawater: Peculiar Functional Groups in Oceanic Organic Matter-Synthesis

  • Chapter
Dynamics and Characterization of Marine Organic Matter

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

Abstract

Marine chemists have been gradually paying increasing attention to strong ligands of low levels involved in dissolved organic matter (DOM) and particulate organic matter (POM) (Dawson and Duursma, 1981; Farrington, 1992). However, studies on the strong organic ligands in seawater have been focused upon only the field of metal speciation. Knowledge about the natural strong organic ligands has been scanty until now. In this report, the strong organic ligands are defined as organics with some functional groups to form complexes with metals under the conditions of seawater. The strong organic ligands, therefore, may be classified as chelators (Buffle, 1988), which can sterically form a claw-like structure with coordination bonds; EDTA (ethlenediaminetetra-acetic acid)chelation is the commonest example given. Such strong organic ligands may be closely related to the biogeochemical behavior of chemical constituents in the marine environments: first, strong ligands in DOM and POM play a significant role in controling chemical forms and levels of trace metals in seawater; second, strong ligands link the interaction between particulate matter and trace metals including radionuclides, which is related to removal processes of “so-called” particle-reactive metals (Hirose et al., 1992); third, strong ligands are related to the bioavailability of trace metals from marine organisms (Barber and Ryther, 1969; Hirose and Sugimura, 1985). On the other hand, if strong ligands are well characterized chemically, they may become an indicator for understanding the behavior of organic matter in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahner, B. A. and F. M. M. Morel (1995): Phytochelatin production in marine algae. 2. Induction by various metals. Limnol. Oceanogr, 40, 658–665.

    Article  Google Scholar 

  • Ahner, B. A., S. Kong and F. M. M. Morel (1995): Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol. Oceanogr, 40, 649–657.

    Article  Google Scholar 

  • Anderegg, G. (1977): Critical survey of stability constants of EDTA complexes, IUPAC Chem. Data Ser. No. 14, Pergamon, London.

    Google Scholar 

  • Anderson, D. M. and F. M. M. Morel (1978): Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr, 23, 268–295.

    Article  Google Scholar 

  • Anderson, M. A., F. M. M. Morel and R. R. L. Guillard (1978): Growth limitation of a coastal diatom by low zinc ion activity. Nature (London), 276, 70–71.

    Google Scholar 

  • Anderson, R. F. (1982): Concentration, vertical flux, and reminerarization of particulate uranium in seawater. Geochim. Cosmochim. Acta, 46, 1293–1299.

    Article  Google Scholar 

  • Anderson, R. F., M. P. Bacon and P. G. Brewer (1983): Removal of 230Th and 231Pa from the open ocean. Earth Planet. Sci. Lett, 65, 7–23.

    Article  Google Scholar 

  • Angel, M. V. (1989): Dose mesopelagic biology affect the vertical flux? pp. 155–173. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, Wiley, New York.

    Google Scholar 

  • Apte, S. C., M. J. Gardner and J. R. Ravenscroft (1990): An investigation of copper complexation in the Severn Estuary using differential pulse cathodic stripping voltamrnetry. Mar. Chem, 29, 63–75.

    Article  Google Scholar 

  • Bacastow, R. and E. Maier-Reimer (1990): Ocean-circulation model of the carbon cycle. Clint. Dyn, 4, 95–125.

    Google Scholar 

  • Bacon, M. P. and R. F. Anderson (1982): Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophy. Res, 87, 2045–2056.

    Article  Google Scholar 

  • Barber, R. T. and J. H. Ryther (1969): Organic chelators; factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol, 3, 191–199.

    Article  Google Scholar 

  • Batley, G. E. and T. M. Florence (1976): Determination of the chemical forms of dissolved cadmium, lead and copper in sea water. Mar. Chem, 4, 347–363.

    Article  Google Scholar 

  • Biedermann, G. and J. T. Chow (1966): Studies on the hydrolysis of metal ions. Part 57. The hydrolysis of the iron(III) ion and the solubility product of Fe (OH)2.7C10.3. Acta Chem. Scand, 20, 1376–1388.

    Article  Google Scholar 

  • Billet, D. S. M., R. S. Lampitt, A. L. Rice and R. F. C. Mantoura (1983): Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, 302, 520–522.

    Article  Google Scholar 

  • Bishop, J. K. B., D. R. Ketten and J. M. Edmond (1978): The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic Ocean. Deep-Sea Res, 25, 1121–1161.

    Google Scholar 

  • Brand, L. E., W. G. Sunda and R. R. L. Guillard (1983): Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr, 28, 1182–1195.

    Article  Google Scholar 

  • Bruland, K. W. (1980): Oceanographic distribution of cadmium, zinc, nickel and copper in the North Pacific. Earth Planet. Sci. Lett, 47, 176–198.

    Article  Google Scholar 

  • Bruland, K. W. (1989): Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr, 34, 267–283.

    Article  Google Scholar 

  • Buckley, P. J. M. and C. M. G. van den Berg (1986): Copper complexation profiles in the Atlantic Ocean. A comparative study using electro-chemical and ion exchange techniques. Mar. Chem, 19, 281–296.

    Article  Google Scholar 

  • Buesseler, K. O. (1991): Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 353, 420–423.

    Article  Google Scholar 

  • Buesseler, K. O., M. P. Bacon, J. K. Cochan and H. D. Livingston (1992): Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th:238U disequilibria. Deep-Sea Res, 39, 1115–1137.

    Article  Google Scholar 

  • Buesseler, K. O., A. F. Michaels, D. A. Siegel and A. H. Knap (1994): A three-dimensional time-dependent approach to calibrating sediment trap fluxes. Global Biogeochem. Cycles, 8, 179–193.

    Article  Google Scholar 

  • Buffle, J. (1988): Complexation Reactions in Aquatic Systems. Ellis Norwood Limited, Chichester. Butman, C. A., W. D. Grant and K. D. Stolzenback (1986): Predictions of sediment trap biases in turbulent flows: a theoretical analysis based on observations from literature. J. Mar. Res, 44, 601–644.

    Google Scholar 

  • Byrne, R. H. and D. R. Kester (1976): Solubility of hydous ferric oxide and iron speciation in seawater. Mar. Chem, 4, 255–276.

    Article  Google Scholar 

  • Cacheris, W. P. and G. P. Choppin (1987): Dissociation kinetics of thorium-humate complex. Radiochim. Acta, 42, 185–190.

    Google Scholar 

  • Campos, M. L. A. M. and C. M. G. van den Berg (1994): Determination of copper complexation in sea water by cathodic stripping voltametry and ligand competition with salicylaldoxime. Anal. Chim. Acta, 284, 481–496.

    Article  Google Scholar 

  • Caron, D. A., H. D. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, J. M. Napp, E. R. Peele, M. R. Roman and M. J. Youngbluth (1995): The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res, 42, 943–972.

    Article  Google Scholar 

  • Chester, R., A. Thomas, F. J. Lin, A. S. Basaham and G. Jacinto (1988): The solid state speciation of copper in surface water particulates and oceanic sediments. Mar. Chem, 24, 261–292.

    Article  Google Scholar 

  • Cho, B. C. and F. Azam (1988): Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332, 441–443.

    Article  Google Scholar 

  • Clegg, S. L. and M. Whitfield (1990): A generalized model for the scavenging of trace metals in the open ocean—I. Particle cycling. Deep-Sea Res, 37, 809–832.

    Article  Google Scholar 

  • Clegg, S. L. and M. Whitfield (1991): A generalized model for the scavenging of trace metals in the open ocean—II. Thorium scavenging. Deep-Sea Res, 38, 91–120.

    Article  Google Scholar 

  • Coale, K. H. and K. W. Bruland (1985): 234Th:234J disequilibria within the California current. Limnol. Oceanogr, 30, 22–33.

    Google Scholar 

  • Coale, K. H. and K. W. Bruland (1988): Copper complexation in the North-west Pacific. Limnol. Oceanogr, 33, 1084–1101.

    Article  Google Scholar 

  • Coale, K. H. and K. W. Bruland (1990): Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res, 34, 317–336.

    Article  Google Scholar 

  • Cochran, J. K., H. D. Livingston, D. J. Hirschberg and L. D. Surprenant (1987): Natural and anthropogenic radionuclide distributions in the Northwest Atlantic Ocean. Earth Planet. Sci. Lett, 84, 135–152.

    Article  Google Scholar 

  • Cooper, L.H.N. (1937): Some conditions govening to solubility of iron, Proc. R.Soc. London, B129, 299–305.

    Article  Google Scholar 

  • Dawson, R. and E. K. Duursma (1982): State of the art. pp. 497–511. In Marine Organic Chemistry, ed. by E. K. Duursma and R. Dawson, Elsevier, Amsterdam.

    Google Scholar 

  • DiSpirito, A. A., J. W. Talnagi and O. H. Touvinen (1983): Accumulation and cellular distribution of uranium in Thiobacillus ferrooxidans. Arch. Microbiol, 135, 250–253.

    Article  Google Scholar 

  • Djogic, R., L. Sipos and M. Branica (1986): Characterization of uranium(VI) in seawater. Limnol. Oceanogr, 31, 1122–1131.

    Article  Google Scholar 

  • Donat, J. R. and K. W. Bruland (1990): A comparison of two voltamrnetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Mar. Chem, 28, 301–323.

    Article  Google Scholar 

  • Donat, J. R. and C. M. G. van den Berg (1992): A new cathodic stripping voltametric method for determining organic copper complexation in seawater. Mar. Chem, 38, 69–90.

    Article  Google Scholar 

  • Donat, J. R., K. A. Lao and K. W. Bruland (1986a): Speciation of dissolved copper and nickel in South San Francisco Bay: a multi-method approach. Anal. Chico. Acta, 284, 547–572.

    Article  Google Scholar 

  • Donat, J. R., P. J. Statham and K. W. Bruland (19866): An evaluation of a C-18 solid phase extraction technique for isolating metal-organic complexes from central North Pacific Ocean waters. Mar. Chem, 18, 85–99.

    Google Scholar 

  • Druffel, E. R. M. and P. M. Williams (1990): Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347, 172–174.

    Article  Google Scholar 

  • Duinker, J. C. and C. J. M. Kramer (1977): An experimental study on the speciation of dissolved zinc, cadmium, lead, and copper in River Rhine and North Sea water by differential pulsed anodic stripping voltammetry. Mar. Chem, 5, 203–228.

    Article  Google Scholar 

  • Dyrssen, D. (1985): Metal complex formation in sulphidic seawater. Mar. Cheni, 15, 285–293.

    Article  Google Scholar 

  • Dyrssen, D. and M. Wedborg (1974): Equilibrium calculations of the speciation of elements in seawater. pp. 181–196. In The Sea, Vol. 5, ed. by E. D. Goldberg, Wiley-Interscience, New York.

    Google Scholar 

  • Elliott, S. (1988): Linear free energy techniques for estimation of metal sulfide complexation constants. Mar. Chem, 24, 203–213.

    Article  Google Scholar 

  • Eppley, R. W. (1989): New production: history, methods, problems. pp. 85–97. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, Wiley, New York.

    Google Scholar 

  • Farrington, J. W. (1992): Macromolecular organic matter working group report. In Marine Organic Geochemistry: Review and Challenges for the Future, ed. by J. W. Farrington, Mar. Chem, 39, 39–50.

    Google Scholar 

  • Fowler, S. W. and G. A. Knauer (1986): Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr, 16, 147–194.

    Article  Google Scholar 

  • Gardner, W. D. (1980a): Sediment trap dynamics and calibration: a laboratory evaluation. J. Mar. Res, 38, 17–39.

    Google Scholar 

  • Gardner, W. D. (1980b): Field assessment of sediment traps. J. Mar. Res, 38, 41–52.

    Google Scholar 

  • Gavis, J. (1983): Toxic binding of cupric ion by marine phytoplankton. J. Mar. Res, 41, 53–63.

    Article  Google Scholar 

  • Grill, E., E.-L. Winnacker and M. H. Zenk (1985): Phytochelations: The principal heavy-metalcomplexing peptides of higher plants. Science, 230, 674–676.

    Article  Google Scholar 

  • Goldberg, E. D. (1954): Marine geochemistry. I. Chemical scavengers of the sea. J. Geol, 62, 249–265.

    Article  Google Scholar 

  • Gordon, D. C., Jr. and P. J. Cranford (1985): Detailed distribution of dissolved and particulate organic matter in the Arctic Ocean and comparison with other oceanic regions. Deep-Sea Res, 32, 1221–1232.

    Article  Google Scholar 

  • Guo, L., P. H. Santschi and K. W. Warnken (1995): Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr, 40, 1392–1403.

    Article  Google Scholar 

  • Hanson, A. K., Jr., C. M. Sakamoto-Arnold, D. L. Huizenga and D. R. Kester (1988): Copper complexation in Sargasso Sea and Gulf Stream warm-core ring waters. Mar. Chem, 23, 181–203.

    Article  Google Scholar 

  • Hara, S., I. Koike, K. Terauchi, H. Kamiya and E. Tanoue (1996): Abundance of viruses in deep oceanic water. Mar. Ecol. Prog. Ser, 145, 269–277.

    Article  Google Scholar 

  • Harley,H.W. (1928): Biological Chemistry and Physics of Sea Water, Cambridge University Press, Cambridge.

    Google Scholar 

  • Haygood, M. G., P. D. Holt and A. Butler (1993): Aerobactin production by a planktonic Vibrio sp. Limnol. Oceanogr, 38, 1091–1097.

    Article  Google Scholar 

  • Hering, J. G., W. G. Sunda, R. L. Ferguson and F. M. M. Morel (1987): A field comparison of two methods for the determination of copper complexation: bacterial bioassay and fixed-potential amperometry. Mar. Chem, 20, 299–312.

    Article  Google Scholar 

  • Hirose, K. (1990): Chemical speciation of trace metals in seawater: implication of particulate trace metals. Mar. Chem, 28, 267–274.

    Article  Google Scholar 

  • Hirose, K. (1994a): Conditional stability constants of organic metal complexes in seawater: past, present and a simple coordination chemistry model. Anal. Chim. Acta, 284, 621–634.

    Article  Google Scholar 

  • Hirose, K. (1994b): Speciation of particulate uranium in seawater: mass balance analysis of sequential leaching experiments. J. Radioanal. Nucl. Chem, Articles, 181, 11–24.

    Article  Google Scholar 

  • Hirose, K. (1995): The relationship between particulate uranium and thorium-complexing capacity of oceanic particulate matter. Sci. Total Environ, 173/174, 195–201.

    Google Scholar 

  • Hirose, K. (1996): Determination of a strong organic ligand dissolved in seawater; thoriumcomplexing capacity of oceanic dissolved organic matter. J. Radioanal. Nucl. Chem, Articles, 204, 193–204.

    Article  Google Scholar 

  • Hirose, K. and Y. Sugimura (1985): Role of metal-organic complexes in the marine environment. A comparison of the copper and ligand titration methods. Mar. Chem, 16, 239–247.

    Article  Google Scholar 

  • Hirose, K. and Y. Sugimura (1990): Chemical speciation of particulate uranium in seawater. J. Radioanal. Nucl. Chem, Articles, 149, 83–96.

    Google Scholar 

  • Hirose, K. and Y. Sugimura (1993): Chemical speciation of particulate 23sU, 239.24°Pu and thorium isotopes in seawater. Sci. Total Environ, 130/131, 517–524.

    Google Scholar 

  • Hirose, K. and E. Tanoue (1994): Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: theory. Geochim. Cosmochim. Acta, 58, 1–7.

    Article  Google Scholar 

  • Hirose, K. and E. Tanoue (1998): The vertical distribution of thorium-complexing capacity in particulate matter: implications with respect to the dynamics of particulate matter in oceanic water columns. Mar. Chem, 59, 235–252.

    Article  Google Scholar 

  • Hirose, K. and E. Tanoue (1999): Spatial distribution of the strong organic ligand in particulate matter of Pacific surface waters. Mar. Chem. (to be submitted).

    Google Scholar 

  • Hirose, K., Y. Dokiya and Y. Sugimura (1982): Determination of conditional stability constants of organic copper and zinc complexes dissolved in seawater using ligand exchange method with EDTA. Mar. Chem, 11, 343–354.

    Article  Google Scholar 

  • Hirose, K., Y. Sugimura and M. Aoyama (1992): Plutonium and 137Cs in the western North Pacific: estimation of residence time of plutonium in surface waters. Appl. Radiat. ‘sot, 43, 349–359.

    Article  Google Scholar 

  • Hudson, R. J. M. and F. M. M. Morel (1990): Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr, 35, 1002–1020.

    Article  Google Scholar 

  • Hudson, R. J. M., D. T. Covault and F. M. M. Morel (1992): Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem, 38, 209–235.

    Article  Google Scholar 

  • Huh, C.-A. and M. P. Bacon (1985): Th-232 in the eastern Caribbean Sea. Nature, 316, 718–721.

    Article  Google Scholar 

  • Huh, C.-A., W. S. Moore and D. Kadko (1985): Oceanic 232Th: a reconnaissance and implications of global distribution from manganese nodules. Geochim. Cosmochim. Acta, 53, 1357–1366.

    Article  Google Scholar 

  • Hurd, D. C. and D. W. Spencer (1991): Marine particles: analysis and characterization. Geophysical Monograph 63, AGU.

    Google Scholar 

  • Jackson, G. A. and J. Morgan (1978): The metal-chelator interactions and phytoplankton growth in sea water media: theoretical analysis and comparison with reported observations. Limnol. Oceanogr, 23, 268–282.

    Article  Google Scholar 

  • Jalal, M. A. F., M. B. Hossain, D. van der Helm, J. Sanders-Loehr, L. A. Actis and J. H. Crosa (1989): Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc, 111, 292–296.

    Article  Google Scholar 

  • Karl, D. M., G. A. Knauer and J. H. Martin (1988): Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, 332, 438–441.

    Article  Google Scholar 

  • Kirchman, D. L., R. G. Keil, M. Simon and N. A. Welschmeyer (1993): Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res, 40, 967–988.

    Article  Google Scholar 

  • Knauer, G. A., D. M. Karl, J. H. Martin and C. N. Hunter (1984): In situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps. J. Mar. Res, 42, 445–462.

    Google Scholar 

  • Kotrly, S. and L. Sucha (1985): Handbook of Chemical Equilibria in Analytical Chemistry. Ellis Norwood Limited, Chichester.

    Google Scholar 

  • Kramer, C. J. M. (1986): Apparent copper complexation capacity and conditional stability constants in North Atlantic waters. Mar. Chem, 18, 335–349.

    Article  Google Scholar 

  • Kramer, C. J. M. and J. C. Duinker (1984): Complexation capacity and conditional stability constants for copper sea and estuarine waters, sediment extracts and colloids. pp. 1–15. In Complexation of Trace Metals in Natural Waters, ed. by J. M. Kramer and J. C. Duinker, Nijhoff/ Junk, The Hague.

    Google Scholar 

  • Krauskopf, K. B. (1956): Factors controlling the concentration of thirteen trace metals in seawater. Geochim. Cosmochim. Acta, 12, 331–344.

    Google Scholar 

  • Ku, T. L., K. G. Knauss and G. G. Mathieu (1977): Uranium in open ocean: concentration and isotopic composition. Deep-Sea Res, 24, 1005–1017.

    Article  Google Scholar 

  • Landing, W. M. and K. W. Bruland (1989): The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim. Cosmochim. Acta, 51, 29–43.

    Article  Google Scholar 

  • Lampitt, R. S. (1985): Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res, 32, 885–897.

    Article  Google Scholar 

  • Langmuir, D. (1978): Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 42, 547–569.

    Article  Google Scholar 

  • Langmuir, D. and J. S. Herman (1980): The mobility of thorium in natural waters at low temperatures, Geochim. Cosmochim. Acta, 44, 1753–1766.

    Article  Google Scholar 

  • Lee, C., S. G. Wakeham and J. I. Hedges (1988): The measurement of oceanic particle flux—are “swimmers” a problem? Oceanogr, 1, 24–36.

    Google Scholar 

  • Lee, S. and J. A. Fuhrman (1987): Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol, 53, 1298–1303.

    Google Scholar 

  • Lewis, B. L., P. D. Holt, S. W. Taylor, S. W. Wilhelm, C. G. Trick, A. Butler and G. W. Luther, III (1995): Voltammetric estimation of iron(Ill) thermodynamic stability constants for catechole siderophores isolated from marine bacteria and cyanobacteria. Mar. Chem, 50, 179–188.

    Google Scholar 

  • Mackey, D. J. (1983): The strongcomplexing capacity of seawater—an investigaion of south-eastern Australian coastal waters. Mar. Chem, 14, 73–87.

    Article  Google Scholar 

  • Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645–677.

    Article  Google Scholar 

  • Mantoura, R. F. C. (1981): Organo-metallic interactions in natural waters. pp. 179–223. In Marine Organic Chemistry, ed. by E. K. Duursma and R. Dawson, Elsevier, Amsterdam.

    Google Scholar 

  • Mantoura, R. F. C., A. Dickson and J. P. Riley (1978): The complexation of metals with humic materials in natural waters. Estuarine Coastal Mar. Sci, 6, 387–408.

    Article  Google Scholar 

  • Martell, A. E. and R. M. Smith (1974): Critical Stability Constants. Vol. 1. Plenum Press, New York.

    Google Scholar 

  • Martell, A. E. and R. M. Smith (1982): Critical Stability Constants. Vol. 5 First Supplement. Plenum Press, New York.

    Google Scholar 

  • Martin, J. H. and S. E. Fitzwater (1988): Iron deficiency limits phytoplankton growth in the N. E. Pacific Subarctic. Nature, 331, 341–343.

    Article  Google Scholar 

  • Martin, J. H. and R. M. Gordon (1988): North Pacific iron distribution in relation to phytoplankton productivity. Deep-Sea Res, 35, 177–196.

    Article  Google Scholar 

  • Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res, 34, 267–285.

    Article  Google Scholar 

  • Martin, J. H., R. M. Gordon, S. E. Fitzwater and W. W. Broenkow (1989): VERTEX: phytoplankton/ iron studies in the Gulf of Alaska. Deep-Sea Res, 36, 649–680.

    Article  Google Scholar 

  • Martin, J. H., K. H. Coale and others (1994): Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123–129.

    Article  Google Scholar 

  • McKnight, D. M. and F. M. M. Morel (1980): Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr, 25, 62–71.

    Article  Google Scholar 

  • Michaels, A. F., M. N. Silver, M. M. Cowing and G. A. Knauer (1990): Cryptic zooplankton “swimmers” in upper ocean sediment traps. Deep-Sea Res, 37, 1285–1296.

    Article  Google Scholar 

  • Midorikawa, T. and E. Tanoue (1996): Effects of ligand speciation on determinations of the complexing abilities of strong ligands in natural waters Detection of a strong ligand. J. Oceanogr, 52, 421–439.

    Article  Google Scholar 

  • Midorikawa, T., E. Tanoue and Y. Sugimura (1990): Determination of complexation ability of natural ligands in seawater for various metal ions using ion selective electrodes. Anal. Chem, 62, 1737–1746.

    Article  Google Scholar 

  • Miller, L. A. and K. W. Bruland (1994): Determination of copper speciation in marine waters by competitive ligand equilibration/liquid-liquid extraction: an evaluation of the technique. Anal. Chim. Acta, 284, 573–586.

    Article  Google Scholar 

  • Mills, G. R. and J. G. Quinn (1984): Dissolved copper and copper-organic complexes in the Narrgansett Bay Estuarine. Mar. Chem, 15, 151–172.

    Article  Google Scholar 

  • Mills, G. R., E. McFadden and J. G. Quinn (1987): Chromatographic studies of dissolved organic matter and copper-organic complexes isolated from estuarine waters. Mar. Chem, 20, 313–325.

    Article  Google Scholar 

  • Moffett, J. W. and R. G. Zika (1987): Solvent extraction of copper acetyl-acetonate in studies of copper(IJ) speciation in seawater. Mar. Chem, 21, 301–313.

    Article  Google Scholar 

  • Moffett, J. W., L. E. Brand and R. G. Zika (1990): Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res, 37, 27–36.

    Article  Google Scholar 

  • Moore, R. M. and K. A. Hunter (1985): Thorium adsorption in the ocean: reversibility and distribution amongst particle sizes. Geochim. Cosmochim. Acta, 49, 2253–2257.

    Article  Google Scholar 

  • Moore, R. M. and G. E. Millward (1988): The kinetics of reversible Th reactions with marine particles. Geochim. Cosmochim. Acta, 52, 113–118.

    Article  Google Scholar 

  • Muller, F. L. L. and D. R. Kester (1991): Voltammetric determination of the complexation parameters of zinc in marine and estuarine waters. Mar. Chem, 33, 71–90.

    Article  Google Scholar 

  • Najjar, R., J. L. Sarmiento J. L. and J. Toggweiler (1992): Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model. Global Biogeochem. Cycles, 6, 45–76.

    Article  Google Scholar 

  • Nash, K. L. and G. R. Choppin (1980): Interaction of humic and fluvic acids with Th(IV). J. Inorg. Nucl. Chem, 42, 1045–1050.

    Article  Google Scholar 

  • Nelson, A. (1985): Voltammetric measurement of copper(II)/organic interactions in estuarine waters. Anal. Chim. Acta, 169, 287–298.

    Article  Google Scholar 

  • Nakajima, A. and T. Sakaguchi (1993): Accumulation of uranium by basidiomycetes. Appl. Microbiol. Biotechnol, 38, 574–578.

    Article  Google Scholar 

  • Nakajima, A., T. Horikoshi and T. Sakaguchi (1979): Uptake of copper ion by green microalgae. Agric. Biol. Chem, 43, 1455–1460.

    Article  Google Scholar 

  • Nimmo, M., C. M. G. van den Berg and J. Brown (1989): The chemical speciation of dissolved nickel, copper, vanadium and iron in Liverpool Bay, Irish Sea. Estuarine Coastal Shelf Sci, 29, 57–74.

    Article  Google Scholar 

  • Nozaki, Y. and Y. Horibe (1983): Alpha-emitting thorium isotopes in the northwest Pacific deep waters. Earth Planet. Sci. Lett, 65, 39–50.

    Article  Google Scholar 

  • Nozaki, Y. and M. Yamada (1987): Thorium and protoactinium isotope distributions in waters of the Japan Sea. Deep-Sea Res, 34, 1417–1430.

    Article  Google Scholar 

  • Nozaki, Y., H.-S. Yang and M. Yamada (1987): Scavenging of thorium in the ocean. J. Geophy. Res, 87, 2045–2056.

    Google Scholar 

  • Okujo, N., M. Saito, S. Yamamoto, T. Yoshida, S. Miyoshi and S. Shinoda (1994): Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Biometals, 7, 109–116.

    Google Scholar 

  • Philander, S. G. (1990): Oceanic Variability in the Tropics. in El Nino, La Nina, and the Southern Oscillation. Academic Press, San Diego, pp. 58–102.

    Google Scholar 

  • Pribil, S. and Marvan, P. (1976): Accumulation of uranium by the chlorococcal algae Scenedesmum quadricauda. Arch. Hydrobiol. Suppl. 49, Algological Studies, 15, 214–225.

    Google Scholar 

  • Reid, R. T., D. H. Live, D. J. Faulkner and A. Butler (1993): A siderophore from a marine bactrium with an exceptional ferric ion affinity constant. Nature, 366, 455–458.

    Article  Google Scholar 

  • Reuter, J. M. and E. M. Perdue (1977): Importance of heavy metal organic matter interactions in natural waters. Geochim. Cosmochim. Acta, 41, 325–334.

    Article  Google Scholar 

  • Rich, H. R. and F. M. M. Morel (1990): Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr, 35, 652–662.

    Article  Google Scholar 

  • Rue, E. L. and K. W. Bruland (1995): Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem, 50, 117–138.

    Article  Google Scholar 

  • Ryther, J. H. and R. R. Guillard (1959): Enrichment experiments as a means of studying nutrients limiting to phytoplankton production. Deep-Sea Res, 6, 65–69.

    Article  Google Scholar 

  • Sakaguchi, T. and A. Nakajima (1991): pp. 309–322. In Mineral Bioprocessing, ed. by R. W. Smith and M. Misra, The Minerals, Metals, Materials Society.

    Google Scholar 

  • Sakaguchi, T., T. Horikoshi and A. Nakajima (1978): Uptake of uranium from sea water by microalgae. J. Ferment. Technol, 56, 561–565.

    Google Scholar 

  • Santschi, P. H., L. Guo, M. Baskaran, S. Trumbore, J. Southon, T. S. Bianchi, B. Honeyman and L. Cifuentes (1995): Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochim. Cosmochim. Acta, 59, 625–631.

    Article  Google Scholar 

  • Sillen, L. G. (1961): The physical chemistry of seawater. pp. 549–582. In Oceanography, ed. by M. Sears, Amer. Assoc. Adv. Sci., Washington, D.C.

    Google Scholar 

  • Sillen, L. G. and A. E. Martell (1964): Stability Constants of Metal-lon Complexes. Chem. Soc., London.

    Google Scholar 

  • Stanley, J. K., Jr. and R. H. Byne (1990): Inorganic complexation of zinc(Il) in seawater. Geochim. Cosmochim. Acta, 54, 753–760.

    Article  Google Scholar 

  • Stumm, W. and P. A. Brauner (1975): Chemical speciation. pp. 175–234. In Chemical Oceanography, Vol. 1, ed. by J. P. Riley and G. Skirrow, 2nd edn., Academic Press, London.

    Google Scholar 

  • Stumm, W. and J. J. Morgan (1996): Aquatic Chemistry. 3rd edn., Wiley, New York.

    Google Scholar 

  • Stryer, L. (1981): Biochemistry. W. H. Freeman, San Francisco.

    Google Scholar 

  • Sugimura, Y. and M. Mayeda (1980): The uranium content and activity ratio 234U/238U in sea water in the Pacific Ocean. pp. 211–246. In Isotope Marine Chemistry, ed. by E. D. Goldberg, Y. Horibe and K. Saruhashi, Uchida Rokakuho, Tokyo.

    Google Scholar 

  • Sugimura, Y., Y. Suzuki and Y. Miyake (1978): Chemical forms of minor metallic elements in the ocean. J. Oceanogr. Soc. Jpn, 34, 93–96.

    Article  Google Scholar 

  • Sunda, W. G. (1989): Trace metal interactions with marine phytoplankton. Biol. Oceanogr, 6, 41 1442.

    Google Scholar 

  • Sunda, W. G. and R. L. Ferguson (1983): Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: a bioassay of copper complexation in sea water. pp. 871–891. In Trace Metals in Sea Water, ed. by C. S. Wong, E. Boyle, K. Bruland, J. Burton and E. D. Goldberg, Plenum, New York.

    Google Scholar 

  • Sunda, W. G. and R. R. L. Guillard (1976): The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res, 34, 511–529.

    Google Scholar 

  • Sunda, W. G. and A. K. Hanson (1987): Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C18 SEP-PAK cartridges. Limnol. Oceanogr, 32, 537–551.

    Article  Google Scholar 

  • Sunda, W. G. and S. A. Huntsman (1991): The use of chemiluminescence and ligand competition with EDTA to measure copper concentration and speciation in seawater. Mar. Chem, 36, 136–163.

    Article  Google Scholar 

  • Symes, J. L. and D. R. Kester (1985): Copper(I1) interaction with carbonate species based on malachite solubility in perchloorate medium at the ionic strength of seawater. Mar. Chem, 16, 189–211.

    Article  Google Scholar 

  • Takahashi, A., H. Nakamura, T. Kameyama, S. Kurasawa, H. Naganawa, Y. Okami, T. Takeuchi, and H. Umezawa (1978): Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis II. Physico-chemical properties and structure determination. J. Antihiot, 40, 1671–1676.

    Article  Google Scholar 

  • Tanoue, E. (1992a): Occurrence and characterization of particulate proteins in the Pacific Ocean. Deep-Sea Res, 39, 743–746.

    Article  Google Scholar 

  • Tanoue, E. (1992b): Vertical distribution of dissolved organic carbon in the North Pacific determined by the high-temperature catalytic oxidation method. Earth Planet. Sci. Lett, 111, 201–216.

    Article  Google Scholar 

  • Tanoue, E. (1993): Distributional characteristics of DOC in the central equatorial Pacific. J. Oceanogr, 49, 625–639.

    Article  Google Scholar 

  • Tanoue, E. (1996): Characterization of the particulate protein in Pacific surface waters. J. Mar. Res (in press).

    Google Scholar 

  • Tanoue, E. (2000): Protein in the sea.ln Dynamics and Characterization of Marine Organic Matter,ed. by N. Handa et al,Terra Pub., Tokyo (in this volume).

    Google Scholar 

  • Tanoue, E., S. Nishiyama, M. Kamo and A. Tsugita (1995): Bacterial membranes: possible source of a major dissolved protein in seawater. Geochim. Cosmochim. Acta, 59, 2643–2648.

    Article  Google Scholar 

  • Tortell, P. D., M. T. Maldonado and N. M. Price (1996): The role of heterotrophic bacteria in ironlimited ocean ecosystems. Nature, 383, 330–332.

    Article  Google Scholar 

  • Tsunogai, S. and S. Noriki (1991): Particulate fluxes of carbonate and organic carbon in the oceans. Is the marine biological activity working as a sink of the atmospheric carbon? Tellus, 43B, 256266.

    Google Scholar 

  • Van den Berg, C. M. G. (1982a): Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. I. Theory. Mar. Chem, 11, 307–322.

    Article  Google Scholar 

  • Van den Berg, C. M. G. (1982b): Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. II. Experimental procedures and application to surface seawater. Mar. Chem, 11, 323–342.

    Article  Google Scholar 

  • Van den Berg, C. M. G. (1984a): Organic and inorganic speciation of copper in the Irish Sea. Mar. Chem, 14, 201–212.

    Article  Google Scholar 

  • Van den Berg, C. M. G. (1984b): Determination of the complexing capacity and conditional stability of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper catechol complex ions. Mar. Chem, 15, 1–18.

    Article  Google Scholar 

  • Van den Berg, C. M. G. (1985): Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc-APCD complex ions. Mar. Chem, 16, 121–130.

    Article  Google Scholar 

  • Van den Berg, C. M. G. (1995): Evidence for organic complexation of iron in seawater. Mar. Chem, 50, 139–157.

    Article  Google Scholar 

  • Van den Berg, C. M. G. and S. Dharmvanij (1984): Determination of complexing capacities of zinc using equilibration of MnO2 with 65Zn. Limnol. Oceanogr, 29, 1025–1036.

    Article  Google Scholar 

  • Van den Berg, C. M. G. and M. Nimmo (1987): Determination of interactions of nickel with dissolved organic material in seawater using cathodic stripping voltammetry. Sci. Total Environ, 60, 185–195.

    Article  Google Scholar 

  • Van den Berg, C. M. G., P. M. Buckley and S. Dharmavanij (1984): Determination of ligands concentration and conditional stability constants in seawater. Comparison of the DPASV and MnO2 adsorption techniques. pp. 213–216. In Complexation of Trace Metals in Natural Waters, ed. by J. M. Kramer and J. C. Duinker, Nijhoff/Junk, The Hague.

    Google Scholar 

  • Veeh, H. H. (1967): Deposition of uranium from the ocean. Earth Planet. Sci. Len, 3, 145–150.

    Article  Google Scholar 

  • Veeh, H. H., S. E. Calvert and N. B. Price (1974): Accumulation of uranium in sediments and phosphorites on the South West African shelf. Mar. Chem, 2, 189–202.

    Article  Google Scholar 

  • Wangersky, P. J. (1986): Biological control of trace metal residence time and speciation: a review and synthesis. Mar. Chem, 18, 269–297.

    Article  Google Scholar 

  • Wefer, G., E. Suss, W. Balzer, G. Liebezeit, P. J. Muller, C. A. Ungerer and W. Zenk (1982): Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage. Nature, 299, 145–147.

    Article  Google Scholar 

  • Williams, P. M. (1969): The association of copper with dissolved organic matter. Limnol. Oceanogr, 14, 156–158.

    Article  Google Scholar 

  • Wu, J. and G. W. Luther, III (1995): Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar. Chem, 50, 159–177.

    Google Scholar 

  • Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycles: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.

    Article  Google Scholar 

  • Yokoi, K. and C. M. G. van den Berg (1992): The determination of iron in seawater using catalytic cathodic stripping voltammetry. Electroanalysis, 4, 65–69.

    Article  Google Scholar 

  • Zeuhike, R. W. and D. R. Kester (1983): Copper speciation in marine waters. pp. 773–788. In Trace Metals in Sea Water, ed. by C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg, Plenum Press, New York.

    Google Scholar 

  • Zhang, H., C. M. G. van den Berg and R. Wollast (1990): The determination of interactions of cobalt(11) with organic compounds in seawater using cathodic stripping voltammetry. Mar. Chem, 28, 285–300.

    Article  Google Scholar 

  • Zirino, A. and S. Yamamoto (1972): Speciation of zinc, lead and cadmium in seawater. Limnol. Oceanogr, 17, 661–671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirose, K. (2000). Strong Organic Ligands in Seawater: Peculiar Functional Groups in Oceanic Organic Matter-Synthesis. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics