Skip to main content

Dynamics of Organic Marine Aggregates: Nanometer-Colloids to Marine Snow

  • Chapter
Dynamics and Characterization of Marine Organic Matter

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

Abstract

A distinctive characteristic of the marine ecosystem is the existence of non-living organic carbon, which is two orders of magnitude larger than the biomass-carbon. In the terrestrial ecosystem, however, the quantity of biomass-carbon is approximately the same as that of organic carbon in soil, the largest detrital pool within the terrestrial system (Cauwet, 1978; Bolin, 1983). This difference can be attributed to the types of organisms dominant in those systems. Long-lived plants with large amounts of supporting tissue are predominant in the terrestrial ecosystem, while marine organisms are primarily single-celled and short-lived (Mopper and Degens, 1979; Lalli and Parsons, 1993). Most non-living organic matter in the ocean falls within a size range of less than 0.5–1.0 μm and is traditionally referred to as dissolved organic material. With an average depth of 4000 m, the ocean is often regarded as a huge but quite diluted incubation medium for various living organisms; in terms of its volume, however, less than a few percent of its volume is suitable for net organic matter production, that is, primary production. Marine organisms and their coupled carbon cycling are well adapted to this aquatic environment. The predominant small-sized organisms obtain their nutrients from the water. Because all metabolic processes of marine organisms are mediated through water, we would expect a close interaction between marine organisms and the various organic material found in the surrounding water column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber, M. and I. Valiela. 1994. Production of microbial organic aggregates from macrophyte-derived dissolved organic material. Limnol. Oceanogr., 39: 37–50.

    Google Scholar 

  • Alldredge, A. L. 1972. Abandoned larvacean houses: A unique food source in the pelagic environment. Science, 117: 885–887.

    Google Scholar 

  • Alldredge, A. L. 1979. The chemical composition of macroscopic aggregates in two neritic seas. Limnol. Oceanogr. 24: 855–866.

    Google Scholar 

  • Alldredge, A. L. and C. Gotschalk. 1988. In situ setting behavior of marine snow. Limnol. Oceanogr., 33: 339–351.

    Google Scholar 

  • Alldredge, A. L. and C. C. Gotschalk. 1990. The relative contribution of marine snow of different origins to biological processes in coastal waters. Continental Shelf Res., 10: 41–58.

    Google Scholar 

  • Alldredge, A. L. and L. P. Madin. 1982. Pelagic tunicates: Unique herbivores in the marine plankton. Bioscience, 32: 655–661.

    Google Scholar 

  • Alldredge, A. L. and M. W. Silver. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanog., 20: 41–82.

    Google Scholar 

  • Alldredge, A. L. and G. A. Jackson. 1995. Aggregation in marine systems. Deep-Sea Res., 42: 1–7.

    Google Scholar 

  • Alldredge, A. L., U. Passow and B. E. Logan. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res., 40: 1131–1140.

    Google Scholar 

  • Alldredge, A. L., C. Gotschalk, U. Passow and U. Riebesell. 1995. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep-Sea Res., 42: 9–27.

    Google Scholar 

  • Amon, R. M. W. and R. Benner. 1994. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 369: 549–552.

    Google Scholar 

  • Amon, R. M. W. and R. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr., 41: 41–51.

    Google Scholar 

  • Asper, V.L. 1987. Measuring the flux and sinking speed of marine snow aggregates. Deep-Sea Res., 34: 1–17.

    Google Scholar 

  • Azam, F. and G. F. Smith. 1991. Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view. p.213–236. In: Particle Analysis in Oceanography, ed. by Demers, S., Springer-Verlag., Heidelberg.

    Google Scholar 

  • Azam, F.,T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257–263.

    Google Scholar 

  • Benner, R., J. D. Pakulski, M. McCarthy, J. I. Hedges and P. G. Hatcher. 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255: 1561–1564.

    Google Scholar 

  • Bergh, O., K. Y. Borsheim, G. Bratbak and M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature (London), 340: 467–468.

    Google Scholar 

  • Biddanda, B. A. 1988. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial metabolism. Mar. Ecol. Prog. Ser., 42: 89–95.

    Google Scholar 

  • Bolin, B. 1983. The carbon cycle. In: The Major Biogeochemical Cycles and Their Interactions, ed. by B. Bolin and R.B. Cook, SCOPE 21, John Wiley & Sons, Chichester.

    Google Scholar 

  • Carlson, C. A. and H. W. Ducklow. 1995. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep-Sea Res., 42: 639656.

    Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin and J. M. Sieburth. 1982. Heterotrophic bacteria and bacteriovorous protozoa in oceanic macroaggregates. Science, 218: 795–797.

    Google Scholar 

  • Cauwet, G. 1978. Organic chemistry of sea water particles: concepts and developments. Oceanol. Acta, 1: 99–105.

    Google Scholar 

  • Cauwet, G. 1981. Non-living particulate matter. p. 71–89. In: arme organic chemistry-Evolution, composition, interactions and chemistry of organic matter in seawater, ed. by E. K. Duursma and R. Dawson, Elsevier Scientific Publ. Co., New York.

    Google Scholar 

  • Choi, J.,W., E. B. Sherr and B.F. Sherr. 1996. Relation between presence-absence of a visible nucleoid and metabolic activity in bacterioplaniton cells. Limnol. Oceanogr. 41: 1161–1168.

    Google Scholar 

  • Conover, R. J. 1966. Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11: 338–345.

    Google Scholar 

  • Conover, R. J. and Corner, E. D. S. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K., 48: 49–75.

    Google Scholar 

  • Dam, H. G. and D. T. Drapeau. 1995. Coagulation efficiency, organic-matter glues and the dynamics of particles during a phytoplankton bloom in a mesocosm study. Deep-Sea Res., 42: 111–123.

    Google Scholar 

  • Dean, R. B. 1948. Modern colloids: An introduction to the physical chemistry of large molecules and small particles. Van Nostrand.

    Google Scholar 

  • Decho, A. W. 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev., 28: 73–153.

    Google Scholar 

  • Decho, A. W. and G. R. Lopez. 1993. Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships. Limnol. Oceanogr., 38: 1633–1645.

    Google Scholar 

  • Ducklow, H. W. and R. P. Harris. (eds.) 1993. Topical Studies in Oceanography: JGOFS: The north Atlantic bloom experiment. Deep-Sea Res. 40: 1–641.

    Google Scholar 

  • Dugdale, R. C. and J. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limol. Oceanogr. 12: 196–206.

    Google Scholar 

  • Dunbar, R. B. and W. Berger. 1981. Fecal pellet flux to modern bottom sediments of Santa Barbara Basin (California) based on sediment trapping. Bull. Geol. Soc. Am., 92: 212–218.

    Google Scholar 

  • Fogg, G. E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar., 26: 3–14.

    Google Scholar 

  • Fowler, S. W. and G. A. Knauer. 1986. Role of large particles in transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16: 147–194.

    Google Scholar 

  • Fuhrman, J. A., R. I. Ferguson. 1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Mar. Ecol. Prog. Ser. 33, 237–242.

    Google Scholar 

  • Gauld, D. T. 1957. Aperitrophic membrane in calanoid copepods. Nature (London), 179: 325–326.

    Google Scholar 

  • Gonzalez, J. M. and C. A. Suttle. 1993. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser., 94: 1–10.

    Google Scholar 

  • Gordon, Jr. and D. C. 1970. A microscopic study of organic particles in the North Atlantic Ocean. Deep-Sea Res. 17 : 175–185.

    Google Scholar 

  • Guo, L., C. H. Coleman Jr. and P.H. Santschi. 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem., 45: 105–119.

    Google Scholar 

  • Hara, S., K. Terauchi and I. Koike. 1991. Abundance of viruses in marine waters: Assessment byepifluorescence and transmission microscopy. Appi. Environ. Microbiol., 57: 2731–2734.

    Google Scholar 

  • Hedges, J. I. 1988. Polymerization of humic substances in natural environments, p. 45–58. In: Humic substances and their role in the environment, ed. by F.H. Frimmel and R.F. Christman, John Wiley & Sons, Chichester.

    Google Scholar 

  • Heldal, M. and B. Bratbak. 1991. Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72 : 205–212.

    Google Scholar 

  • Holm-Hansen, O. W. H. Sutcliffe, Jr. and J. Sharp. 1968. Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507–514.

    Google Scholar 

  • Honjo, S. 1978. Sedimentation of materials in the Sargasso Sea at a 5,367m deep station. J. Mar. Res.36 : 469–492.

    Google Scholar 

  • Honjo, S., M. R. Roman. 1978. Marine copepod fecal pellets: production, preservation and sedimentation. J. Mar. Res., 36: 45–57.

    Google Scholar 

  • Ikeda, T. 1974. Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ.22:197.

    Google Scholar 

  • Jackson, G. A. 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res.37 : 1197–1211.

    Google Scholar 

  • Johnson, B. D. and P. E. Kepkay. 1992. Colloid transport and bacterial utilization on oceanic DOC. Deep-Sea Res., 39: 855–869.

    Google Scholar 

  • Karl, D. M. and B. D. Tilbrook. 1994. Production and transport of methane in oceanic particulate organic matter. Nature (London), 368: 732–734.

    Google Scholar 

  • Keil, R. G. and Kirchman, D. L. 1994. Abiotic transformation of labile protein to refractory protein in seawater. Mar. Chem.45 : 187–196.

    Google Scholar 

  • Kepkay, P. E. 1994. Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser.109 293–304.

    Google Scholar 

  • Kepkay, P. E. and B. D. Johnson. 1989. Coagulation on bubbles allows microbial respiration of oceanic dissolved organic carbon. Nature (London), 338: 63–65.

    Google Scholar 

  • Kepkay, P. E., W. G. Harrison and B. Irwin. 1990. Surface coagulation, microbial respiration and primary production in the Sargasso Sea. Deep-Sea Res.37 : 145–155.

    Google Scholar 

  • Kepkay, P. E., D. K. Muschenheim and B. D. Johnson. 1990. Surface coagulation and microbial respiration at a tidal front on Georges Bank. Continental Shelf Res., 10: 573–588.

    Google Scholar 

  • Koike, I, S. Hara, K. Terauchi and K. Kogure. 1990. Role of sub-micrometre particles in the ocean. Nature (London), 345: 242–24.

    Google Scholar 

  • Koike, I, S. Hara, K. Terauchi, A. Shibata and K. Kogure. 1993. Marine Viruses-Their role in upper ocean dissolved organic matter (DOM) dynamics. p. 311–314. In: Trends in Microbial Ecology, ed. by R. Guerrero and C. Pedros-Alio, Spanish Society for Microbiology.

    Google Scholar 

  • Lalli C. and T. R. Parsons. 1993. Biological oceanography-An introduction. Pergamon Press, Oxford, pp. 115–150.

    Google Scholar 

  • Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limol. Oceanogr. 23: 831–834.

    Google Scholar 

  • Lampitt, R. S., T. Noji and B. Bodungen. 1990. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol., 104: 15–23.

    Google Scholar 

  • Lampitt, R. S., K. F. Wishner, C. M. Turey and M. V. Angel. 1993. Marine snow studies in the Northern Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol., 116: 689–702.

    Google Scholar 

  • Larson, E. T. and A. L. Shanks. 1996. Consumption of marine snow by two species of juvenile mullet and its contribution to their growth. Mar. Ecol. Prog. Ser., 130: 19–28.

    Google Scholar 

  • Lee, S. and S. M. Hendricks. 1993. How the nature of dissolved organic matter might affect the analysis of dissolved organic carbon. Mar. Chem., 41: 105–120.

    Google Scholar 

  • Logan, B. E, D. B. Wilkinson. 1990. Fractal geometry of marine snow and other biological aggregates. Limnol. Oceanogr. 35: 130–136.

    Google Scholar 

  • Long, R. A., F. Azam. 1996. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol., 10: 213–221.

    Google Scholar 

  • Mague, T. H., E. Friberg, D. J. Hughes and I. Morris. 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr., 25: 262–279.

    Google Scholar 

  • Marchant, H. J. and F. J. Scott. 1993. Uptake of sub-micrometre particles and dissolved organic material by Antarctic choanoflagellates. Mar. Ecol. Prog. Ser., 92: 59–64.

    Google Scholar 

  • Mel’nikov, I. A. 1977. Morphological characteristics of organic detritus particles. Oceanol. Acad. Sci. U.S.S.R., 16: 401–403.

    Google Scholar 

  • Meyers-Schulte, K. J. and J. H. Hedges. 1986. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature, 321: 61–63.

    Google Scholar 

  • Mopper, K. and E. T. Degens. 1979. Organic carbon in the ocean: Nature and cycling, p. 293–316. In: The global carbon cycle, ed. by B. Bolin, E.T. Degens, S. Kempe and P. Ketner, John Wiley & Sons, Chichester.

    Google Scholar 

  • Mopper, K., J. Zhou, K. Sri Ramana, U. Passow, H. G. Darn, D and T. Drapeau. 1995. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Res., 42: 47–73.

    Google Scholar 

  • Moran, S. B. and K. O. Buesseler. 1992. Short residence time of colloids in the upper ocean estimated from 238U–234Th disequilibria. Nature (London), 359: 221–223.

    Google Scholar 

  • Murray, J. W. (ed.) 1995. Topical Studies in Oceanography: A U.S. JGOFS Process Study in the Equatorial Pacific. Deep-Sea Res. 42: 275–903.

    Google Scholar 

  • Nagata, T. 1997. “Picopellets” produced by phagotrophic nanoflagellates: Role in the material cycling within marine environments. this volume.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman. 1996. Bacterial degradation of protein adsorbed to model submicron particles in seawater. Mar. Ecol. Prog. Ser., 132: 241–248.

    Google Scholar 

  • Nagata, T. and I. Koike 1995. Marine colloids: Their roles in food webs and biogeochemical fluxes. p. 275–292. In: Biogeochemical Processes and Ocean Flux in the Western Pacific. ed. by H. Sakai and Y. Nozaki, Terra Scientific Publishing Co., Tokyo.

    Google Scholar 

  • Nemoto, T. and K. Ishikawa. 1969. Organic particulate and aggregate matters stained by histochemical reagents in the East China Sea. J. Oceanogr. Soc. Japan, 4: 281–290.

    Google Scholar 

  • Ogawa, H. and N. Ogura. 1992. Comparison of two methods for measuring dissolved organic carbon in sea water. Nature (London), 356 696–698.

    Google Scholar 

  • Parsons, T. R. 1963. Suspended organic matter in sea water. pp.205. In: Progress in Oceanography Vol. 1, ed. by Sears, M., Pergamon, Oxford.

    Google Scholar 

  • Parsons, T. R. and J. D. H. Strickland. 1962. Oceanic detritus. Science, 136: 313–315.

    Google Scholar 

  • Parsons, T. R., M. Takahashi and B. Hargrave. 1984. Biological Oceanographic Processes. 3rd. ed., Pergamon. Oxford, 330 pp.

    Google Scholar 

  • Passow, U. and A. L. Alldredge. 1994. Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar. Ecol. Prog. Ser., 113: 185–198.

    Google Scholar 

  • Paul, J. H., W. H. Jefferey and M. DeFlaun. 1985. Particulate DNA in subtropical oceanic and estuarine planktonic environments. Mar. Biol., 90: 95–101.

    Google Scholar 

  • Pilskaln, C. H. and S. Honjo. 1987. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global Biogeochem. Cycles, 1: 31–48.

    Google Scholar 

  • Proctor, L. M. and J. A. Fuhrman. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature (London), 343: 60–62.

    Google Scholar 

  • Riley, G. A. 1963. Organic aggregates in seawater and the dynamics of their formation and utilization. Limnol. Oceanogr., 8: 372–381.

    Google Scholar 

  • Romankevich, E. A. 1984. Geochemistry of organic matter in the ocean. Springer-Verlag, Tokyo, pp. 89–95.

    Google Scholar 

  • Santschi, P. H., L. Guo, M. Baskaran, S. Trumbore, J. Southon, T. S. Bianchi, B. Honeyman, and L. Cifuents. 1995. Isotope evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochem. Cosmochem. Acta, 59: 625–631.

    Google Scholar 

  • Sasaki, H. and S. Nishizawa. 1981. Vertical flux profiles of particulate materials in the sea off Sanriku. Mar. Ecol. Prog. Ser., 6: 191–201.

    Google Scholar 

  • Seki, F., 1. Koike, E. Matsumoto, and A. Hattori. 1972. A study of the distribution of total bacteria, bacterial aggregates and heterotrophic bacteria in the sea. 1. I the subarctic Pacific region and the western north Pacific central region. J. Oceanogr. Soc. Japan, 28, 103–108.

    Google Scholar 

  • Sempéré, R. and G. Cauwet. 1995. Occurrence of organic colloids in the stratified estuary of the Krka River (Croatia). Estuarine Coastal Shelf Sci., 40: 105–114.

    Google Scholar 

  • Shanks, A. L. and J. D. Trent. 1979. Marine snow: Microscale nutrient patches. Limnol. Oceanogr., 24: 850–854.

    Google Scholar 

  • Shanks, A. L. and E. W. Edmondson. 1989. Laboratory-made artificial marine snow: a biological model of the real thing. Mar. Biol., 101: 463–470.

    Google Scholar 

  • Sharp, J. H. 1973. Size classes of organic carbon in seawater. Limnol. Oceanogr., 18: 441–447. Shaw, D. J. 1992. Introduction to Colloid & Surface Chemistry. 4th ed., Butterworth Heinemann, London.

    Google Scholar 

  • Sheldon, R. W. and T. R. Parsons. 1967. A continuous size spectrum for particulate matter in the sea. J. Fish. Res. Bd. Canada, 24: 909–915.

    Google Scholar 

  • Sheldon, R. W., A. Prakash and W. H. Sutcliffe, Jr. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr., 17: 327–340.

    Google Scholar 

  • Sieracki, M. E. and C. L. Viles. 1992. Distributions and fluorochrome-staining properties of submicrometer particles and bacteria in the North Atlantic. Deep-Sea Res., 39: 1919–1929.

    Google Scholar 

  • Simon, M., A. L. Alldredge and F. Azam. 1990. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser., 65: 205–211.

    Google Scholar 

  • Smith, D. C., M. Simon, A. L. Alldredge and F. Azam. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature (London), 359: 139142.

    Google Scholar 

  • Smith, D. C., G. F. Steward, R. A. Long and F. Azam. 1995. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res., 42: 75–97.

    Google Scholar 

  • Stoecker, D. K. 1984. Particle production by planktonic ciliates. Limnol. Oceanogr., 29: 930–940.

    Google Scholar 

  • Sutcliffe, W. H., Jr., R. W. Sheldo and A. Prakash. 1970. Certain aspect of production and standingstock of particulate matter in the surface waters of the Northwest Atlantic ocean. J. Fish. Res. Bd. Can., 27: 1917–1926.

    Google Scholar 

  • Taguchi, S. 1982. Seasonal study of fecal pellets and discarded houses of appendicularia in a subtropical inlet, Kaneoha Bay, Hawaii. Estuar. Coast. Shelf Sci. 14: 545–555.

    Google Scholar 

  • Tanoue, E. and N. Handa, H. 1979. Distribution of particulate organic carbon and nitrogen in the Bering Sea and northern North Pacific Ocean. J. Oceanogr. Soc. Japan, 35: 47–62.

    Google Scholar 

  • Tanoue, E., and N. Handa. 1987. Monosaccharide composition of phytoplankton, suspended particles, sinking particles and bottom sediments from the Bering Sea and northern North Pacific. Oceanol. Acta, 10: 91–99.

    Google Scholar 

  • Tanoue, E., N. Handa and M. Kato. 1982a. Horizontal and vertical distribution of particulate organic matter in the Pacific sector of the Antarctic Ocean. Trans. Tokyo Univ. Fish., 5: 65–83.

    Google Scholar 

  • Tanoue, E., N. Handa and H. Sakugawa. 1982b. Difference of the chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Dunaliella tertiolecta. Trans. Tokyo Univ. Fish. 5: 189–196.

    Google Scholar 

  • Tanoue, E., M. Zenimoto, Y. Komaki and N. Handa. 1986. Distribution of particulate organic matter in the Pacific and Indian sector of the Antarctic Ocean in the austral summer. Mem. Natl Inst. Polar Res., Spec. Issue, 40: 380–394.

    Google Scholar 

  • Tranvik, L. 1994. Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacteriovory and autotrophy. Appl. Environ. Microbiol., 60: 1884–1888.

    Google Scholar 

  • Tranvik, L. J., E. B. Sherr and B.F. Sherr. 1993. Uptake and utilization of `colloidal DOM’ by • heterotrophic flagellates in seawater. Mar. Ecol. Prog. Ser.,92 301–309.

    Google Scholar 

  • Tsuji, Y. and S. Sukizaki. 1991. Measurement of marine snow abundance using the submersible. La mer, 29: 159–165.

    Google Scholar 

  • Wakeham, S. G. and E. A. Canuel. 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particle dynamics. J. Mar. Res., 46: 183–213.

    Google Scholar 

  • Webb, K. L. and R. E. Johannes. 1967. Studies of the release of dissolved free amino acids by marine zooplankton. Limnol. Oceanogr., 12: 376–382.

    Google Scholar 

  • Webb, K. L. and R. E. Johannes. 1969. Do marine crustaceans release dissolved amino acids? Comp. Biochem. Physiol., 29: 875–878.

    Google Scholar 

  • Wells, M. L. and E. D. Goldberg. 1991. Occurrence of small colloids in sea water. Nature (London), 353: 342–344.

    Google Scholar 

  • Wells, M. L. and E. D. Goldberg. 1992. Marine sub-micron particles. Mar. Chem., 40: 5–18.

    Google Scholar 

  • Wells, M. L. and E. D. Goldberg. 1993. Colloid aggregation in seawater. Mar. Chem., 41: 353–358.

    Google Scholar 

  • Wells, M. L. and E. D. Goldberg. 1994. The distribution of colloids in the North Atlantic and Southern Oceans. Limnol. Oceanogr., 39: 286–302.

    Google Scholar 

  • Wiebe, P. H. S. H. Boyd and C. Winget. 1976. Particulate matter sinking to the deepsea floor at 2000 m in the tongue of the ocean, Bahamas, with a description of a new sedimentation trap. J. Mar. Res.,34 341–354.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel. 1988. Dissolved organic matter in the ocean: comments on a controversy. Oceanography, 1, 14–17.

    Google Scholar 

  • Yanada, Y and Y. Maita. 1995. Regional and seasonal variations of biomass and bio-mediated materials in the North Pacific Ocean. p. 293–306. In: Biogeochemical Processes and Ocean Flux in the Western Pacific, ed. by H. Sakai and Y. Nozaki, Terra Scientific Publishing Co., Tokyo.

    Google Scholar 

  • Zweifel, U. L. 1995. Degradation of dissolved organic carbon in the marine environment: Implication for bacterial growth. PhD thesis, University of Umea, Sweden. pp. 35.

    Google Scholar 

  • Zweifel, U. L. and A. Hagström. 1995. Total counts of marine bacteria include a large fraction of non-nucleoid containing “ghosts”. Appl. Environ. Microbiol., 61: 2180–2185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hara, S., Koike, I. (2000). Dynamics of Organic Marine Aggregates: Nanometer-Colloids to Marine Snow. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics