Skip to main content

Abstract

Over more than a decade molecular techniques have been applied to analyse the response of plants to drought with the objective to identify genes which contribute to drought tolerance. The studies have used a variety of experimental strategies, and they have resulted in the characterization of a large number of genes which are expressed upon dehydration. A very prominent group among these genes are the so-called Lea (=late embryogenesis abundant) genes which appear to occur ubiquitously in most higher plants. A challenge for future research is still to identify the role of the gene products in dehydration stress; it is particularly necessary to distinguish gene products with a potential in osmoprotection and those which are only involved in secondary reactions. Another area of research activities has been to elucidate the dehydration stress-triggered signal transduction and the role of ABA in this process. For this part transgenic plants have been used to evaluate promoter sequences and to characterize cis-acting regulatory promoter elements crucial for a distinct expression pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almoguera C, Coca MA and Jordans J (1993) Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant J 4: 947–958

    Article  CAS  Google Scholar 

  • Amuti KS and Pollard JC (1977) Soluble carbohydrates of dry and developing seeds. Phytochem 16: 529–532

    Article  CAS  Google Scholar 

  • Baker J, Steele C and Dure III L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11: 277–291

    Article  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D and Salamini F (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34

    Article  CAS  Google Scholar 

  • Bartels D, Singh M and Salamini F (1988) Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485–492

    Article  CAS  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol 30: 195–238

    Article  CAS  Google Scholar 

  • Bewley JD and Oliver MJ (1992) Desiccation tolerance in vegetative tissues and seeds: protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. In: Somero GN, Osmond CB and Bolis CL (eds) Bewley JD and Oliver MJ, pp 223–239. Springer-Verlag Berl in Heidelberg

    Google Scholar 

  • Bray EA (1990) Drought-stress-induced polypeptide accumulation in tomato leaves. Plant Cell Environ 13: 531–538

    Article  CAS  Google Scholar 

  • Bray EA (1991) Regulation of genes expression by endogenous ABA during drought stress. In: Davies WJ and Jones HG (eds) Abscisic Acid: Physiology and Biochemistry, pp 81–98. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Chen R-D, Yu L-X, Greer AF, Cheriti H and Tabaeizadeh Z (1994) Isolation of an osmotic stress-and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Crowe LM, Mouradian R, Crowe HJ, Jakson SA and Womersley C (1984) Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta 769: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Dure III L, Greenway SC and Galan GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. J Biochem 20: 4162–4168

    Article  CAS  Google Scholar 

  • Dure III L, Crouch M, Harada J, Ho T-H, Mundy J, Quatrano R, Thomas T and Sung ZR (1989) Common amino acid sequence domains among the Lea proteins of higher plants. Plant Mol Biol 12: 475–486

    Article  CAS  Google Scholar 

  • Eisemberg AJ and Mascarenhas JP (1985) Abscisic acid and the regulation of the synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos. Planta 166: 505–514

    Article  Google Scholar 

  • Espartero J, Pintor-Toro JA and Pardo JM (1994) Differential accumulation of 5-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25: 217–227

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR (1994) Mutation at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5: 765771

    Google Scholar 

  • Finkelstein RR and Sommerville C (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA resaponses. Plant Physio194: 1172–1179

    Google Scholar 

  • Furini A, Parcy F, Salamini F and Bartels D (1996) Differential regulation of two ABA-inducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants. Plant Mol Biol 30: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in southern Africa. Science 174: 1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF and Churchill DM (1976) Borya nitida Labill. An Australia species in the Liliaceae with desiccation-tolerance leaves. Austr J Bot 24: 209–224

    Google Scholar 

  • Galan GA, Hughes DW, and Dure III L (1986) Abscisic acid induction of cloned cotton late embryogenesis abundant ( Lea) mRNA. Plant Mol Biol 7: 155–170

    Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F and Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261

    PubMed  CAS  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morns P-C, Bovier-Durand M and Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26: 1557–1577

    Article  PubMed  CAS  Google Scholar 

  • Gosti F, Bertauche N, Vartanian N and Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Guerrero FD, Jones JT and Mullet JE (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol 15: 11–26

    Google Scholar 

  • Guiltinan MJ, Marcotte WR and Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM and Quatrano RS (1991) Mechanism of action of abscisic acid at the cellular level. New Phytol 119: 9–32

    Article  CAS  Google Scholar 

  • Hughes DW and Galan GA (1991) Development and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3: 605–618

    PubMed  CAS  Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K and Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247: 391–398

    Article  PubMed  CAS  Google Scholar 

  • Kaiser K, Gaff DF, and Outlaw WH Jr (1985) Naturwissenschaften 72: 608–609

    Article  Google Scholar 

  • Kermode AR and Bewley JD (1987) Regulatory processes involved in the switch from seed development to germination: possible role for desiccation and ABA. In: Monti L and Porceddu E (eds) Drought Resistance in Plants, Physiological and Genetic Aspects, pp 59–76. EEC, Brussels

    Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K and Shinozaki K (1994) Characterization of two cDNAs (ERD 10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35: 225–231

    Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC and Karssen CM (1982). The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non germinating gibberellin sensitive lines of Arabidopsis thaliana ( L.) Heynh. Theor Appl Genet 61: 385–393

    Google Scholar 

  • Koornneef M, Reuling G and Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61: 377–383

    Article  CAS  Google Scholar 

  • Leopold AC, Bruni F and Williams RJ (1992) Water in dry organisms. In: Somero GN, Osmond CB and Bolis CL (eds) Water and Life, pp 161–169. Springer-Verlag, Berl in Heidelberg

    Chapter  Google Scholar 

  • Ludevid MD, Freire MA, Gomez J, Burd CG, Arbericio F, Giralt E, Dreyfuss G and Pages M (1992) RNA binding characteristics of a 16 kDa glycine-rich protein from maize. Plant J 2: 9991003

    Google Scholar 

  • Marcotte WR, Russel SH and Quatrano RS (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976

    PubMed  CAS  Google Scholar 

  • McKersie BD and Leshem YY (1994) Desiccation. In: McKcKersie BD and Leshem YY (eds) Stress and Stress Coping in Cultivated Plants, pp 132–144

    Chapter  Google Scholar 

  • Michel D, Salamini F, Bartels D, Dale P, Baga M and Szalay A (1993) Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. The Plant Journal 4: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Michel D, Furini A, Salamini F and Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biology 24: 549–560

    Article  CAS  Google Scholar 

  • Mittler R and Zilinskas BA (1991) Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett 289: 257–259

    Article  PubMed  CAS  Google Scholar 

  • Mudgett MB and Clarke S (1993) Characterization of plant Lisoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Biochemistry 32: 11100–11111

    Article  PubMed  CAS  Google Scholar 

  • Mudgett MB and Clarke S (1994) Hormonal and environmental responsiveness of a developmentally regulated protein repair Lisoaspartyl methyltransferase in wheat. J Biol Chemistry 269: 25605–25612

    CAS  Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K and Chua N-H (1990) Nuclear proteins bind conserved elements in the abscisic acid responsive promoter of a rice rats gene. Proc Natl Acad Sci USA 87: 14061410

    Google Scholar 

  • Nelson D, Salamini F and Bartels D (1994) Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J 5: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Oeda K, Salinas J and Chua N-H (1991) A tobacco bZIP transcription activator (TAF-1) binds to a G-box like motif conserved in plant genes. EMBO J 10: 1793–1802

    PubMed  CAS  Google Scholar 

  • Perl-Treves R, Nacmias B, Aviv D, Zeelon EP and Galun E (1988) Isolation of two cDNA clones from tomato containing two different superoxide dismutase sequences. Plant Mol Biol 11: 609–623

    Article  CAS  Google Scholar 

  • Piatkowski D, Schneider K, Salamini F and Bartels D (1990) Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94: 1682–1688

    Article  PubMed  CAS  Google Scholar 

  • Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS and Pages M (1993) The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol 21: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Quatrano RS (1986) Regulation of gene expression by abscisic acid during angiosperm development. Oxford Sury Plat Mol Cell Biol 3: 467–477

    CAS  Google Scholar 

  • Quatrano RS (1989) The role of hormones during seed development. In: Davies RD (ed) Plant Hormones and their Role in Plant Growth and Development, pp 494–514. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Rickers J, Cushman JC, Michalowski CB, Schmitt JM and Bohnert HJ (1989) Expression of the CAM-form of phospho(enol)pyruvate carboxylase and nucleotide sequence of a full length cDNA from Mesembrynthemum crystallinum. Mol Gen Genet 215: 447–454

    Article  PubMed  CAS  Google Scholar 

  • Schnall JA and Quatrano RS (1992) Abscisic acid elicits the water stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100: 216–218

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T and McKersie BD (1983) Dehydration injury in germinating soybean (Glycine max L. Merr.) seeds. Plant Physiol 72: 620–624

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T, McKersie BD and Borochov A (1987) Desiccation and free radical mediated changes in plant membranes. J Exp Bot 38: 2005–2014

    Article  CAS  Google Scholar 

  • Shen Q and Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295–307

    PubMed  CAS  Google Scholar 

  • Skriver K and Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 502–512

    Google Scholar 

  • Skriver K, Olsen PL, Rogers JC and Mundy J (1991) Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Nat] Acad Sci USA 88: 7266–7270

    Article  CAS  Google Scholar 

  • Sun WQ and Leopold AC (1993) Acquisition of desiccation tolerance in soybeans. Physiol Plant 87: 403–409

    Article  Google Scholar 

  • Taylor JE, Renwick KF, Webb AAR, McAinsh MR, Furini A, Bartels D, Quatrano RS, Marcotte WR Jr and Hetherington AM (1995) ABA-regulated promoter activity in stomatal guard cells. Plant J 7: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ and Jones HG (1991) An assessment of the role of ABA in plant development. In: Davies WJ and Jones HG (eds) Abscisic acid Physiology and Biochemistry, pp 169–188. Bios Scientific, Oxford

    Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashi-da N and Shinozaki K (1994) Two genes that encode Cat+-dependent protein kinases are induced by drought and high-salt stresses in Arabodopsis thaliana. Mol Gen Genet 244: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Vartanian N, Marcotte L and Giraudat J (1994) Drought rhyzogenesis in Arabidopsis thaliana. Differential responses of hormonal mutants. Plant Physiol 104: 761–766

    Google Scholar 

  • Velasco R, Salamini F and Bartels D (1994) Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol Biol 26: 541–546

    Article  PubMed  CAS  Google Scholar 

  • Vilardell J, Martinez-Zapater JM, Goday A, Arenas C and Pages M (1994) Regulation of the rabl7 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol Biol 24: 561–569

    Google Scholar 

  • Vilardell J, Mundy J, Stilling B, Leroux B, Pla M, Freyssinet G and Pages M (1991) Regulation of the maize rabl7 gene promoter in transgenic heterologous systems. Plant Mol Biol 17: 985–993

    Article  PubMed  CAS  Google Scholar 

  • White DA and Zilinskas BA (1991) Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. Plant Physiol 96: 1391–1392

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ and Leopold AC (1989) The glassy state in corn embryos. Plant Physiol 89: 977–981

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Foster R and Chua N-H (1992) Sequences flanking the hexameric G-box core CACGTG affect the specificity of the protein binding. Plant Cell 4: 485–496

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Mino M, Mundy J and Chua N-H (1990) Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol 15: 905–912

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S and Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33: 217–224

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264

    PubMed  CAS  Google Scholar 

  • Zeevaart JAD and Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39: 439–473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bartels, D., Furini, A., Ingram, J., Salamini, F. (1996). Responses of plants to dehydration stress: a molecular analysis. In: Belhassen, E. (eds) Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1299-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1299-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4721-2

  • Online ISBN: 978-94-017-1299-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics