• A. Gyr
  • H.-W. Bewersdorff
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 32)


Turbulent Boundary Layer Drag Reduction Pipe Flow Polymer Additive Elongational Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernathy, F.H., Bertschy, J.R., Chin, R.W. & Keyes, D.E. 1980 Polymer induced fluctuations in high strain-rate-rate laminar flows. Journal of Rheology 24, 647–665ADSCrossRefGoogle Scholar
  2. Abernathy, F.H. & He, Z. 1984 Polymer induced velocity fluctuations in dilute drag reducing pipe flows. In: Drag Reduction (eds. Sellin, R.H.J., Moses, R.T. ), University of Bristol, paper B8Google Scholar
  3. Achia, B.U. & Thompson, D.W. 1974 Laser holographic measurement of wall–turbulence structures in drag–reducing pipe flow. Proc. Int. Conf. Drag reduction, Cambridge (ed. N.G. Coles), BHRA A2–23–40Google Scholar
  4. Achia, B.U. & Thompson, D.W. 1977 Structure of the turbulent boundary in drag reducing pipe flow. J. Fluid Mech. 81, 439–464ADSCrossRefGoogle Scholar
  5. Arnbom, L. & Hagstrand, U. 1977 Toms effect in district heating tube systems, Report SVF-50, Studsvik, in SwedishGoogle Scholar
  6. Astarita, G. & Nicodemo, L. 1970 Extensional behaviour of polymer solutions. Chemical Engineering J. 1, 57–65.CrossRefGoogle Scholar
  7. Bartram, E., Goldsmith, H.L. & Mason, S.G. 1975 Particle motions in non-Newtonian media III. Further observations in elasticoviscous fluids. Rheol. Acta 14, 776–782CrossRefGoogle Scholar
  8. Barnes, H.A., Hutton, J.F. & Walters, K. 1989 An introduction to rheology, Elsevier, AmsterdamzbMATHGoogle Scholar
  9. Bark, F. 1974 On the wave structure of turbulent boundary layers with application to drag reduction. The Royal Inst. of Techn. Sweden TRITA-MEK-74–01Google Scholar
  10. Bark, F.H. & Tinoco, H. 1978 Stability of plane Poiseuille flowof a dilute suspension of slender fibres. J. Fluid Mech. 87, 321–333ADSzbMATHCrossRefGoogle Scholar
  11. Barnes, H.A. 1981 Dispersion rheology: 1980, Royal Society of Chemistry, Industrial Division, LondonGoogle Scholar
  12. Batchelor, G.K. 1953 A theory of homogeneous turbulence. Cambridge University PressGoogle Scholar
  13. Batchelor, G.K. 1967 An introduction to fluid dynamics. Cambridge University PressGoogle Scholar
  14. Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by pure straining motion, J. Fluid Mech. 46, 813–829ADSzbMATHCrossRefGoogle Scholar
  16. Batchelor, G.K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83, 97–117MathSciNetADSCrossRefGoogle Scholar
  17. Bechert, D.W. & Bartenwerfer, M. 1990 Turbulent drag reduction by nonplanar surfaces-A survey on the research at TU/DLR Berlin. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 525–543Google Scholar
  18. Beiersdorfer, H. 1994 Untersuchungen der Turbulenzstruktur bei maximaler Widerstandsverminderung in einer Kanalströmung einer viskoelastischen Tensidlösung. MS Thesis University of Dortmund.Google Scholar
  19. Beiersdorfer, H., Bewersdorff, H.-W. & Gyr, A. 1994 Flows with surfactant at maximum drag reduction. Proc. IUTAM Symp. On liquid particle interactions in suspension flow. Grenoble (in print)Google Scholar
  20. Bekturov, E.A. & Bakauova, Z.K. 1986 “Synthetic water-soluble polymers in solution”, Huethig & Wepf, BaselGoogle Scholar
  21. Berman, N.S. 1978 Drag reduction by polymers. Ann. Rev. Fluid Mech. 10, 47–64ADSCrossRefGoogle Scholar
  22. Berman, N.S. 1986 Molecular interactions in drag reduction in pipe flows. In Encyclopedia Fluid Mech. (ed. Cherimisinoff, P. ), Gulf Publ. Co, WA, 1, 1060–1081Google Scholar
  23. Berman, N.S. & Cooper, E.E. 1972 Stability studies in pipe flows using water and dilute polymer solutions. AIChE J. 18, 312–320CrossRefGoogle Scholar
  24. Berner, C. & Scrivener, O. 1980 Drag reduction and structure of turbulence in dilute polymer solutions. In: Viscous flow drag reduction. Progr. Astron. A Aeronautics (ed. G.R. Hough) 72, 290–298Google Scholar
  25. Bewersdorff, H.-W. 1985 Heterogeneous drag reduction in turbulent pipe flow. In: The influence of polymer additives on velocity and temperature fields. Proc. IUTAM Symp. Essen 1984, Springer Verl. (ed. B. Gampert ), 337–348CrossRefGoogle Scholar
  26. Bewersdorff, H.W. 1990 Drag reduction in surfactant solutions. In: Structure of turbulence and drag reduction. (ed. A. Gyr) Springer, Berlin, 293–312CrossRefGoogle Scholar
  27. Bewersdorff, H.-W. & Berman, N.S. 1987 Effect of roughness on drag reduction for commercially smooth pipes. J. Non-Newtonian Fluid Mech. 24, 365–370CrossRefGoogle Scholar
  28. Bewersdorff, H.-W. & Berman, N.S. 1988 The influence of flow-induced non-Newtonian fluid properties on turbulent drag reduction. Rheol. Acta 27, 130–136zbMATHCrossRefGoogle Scholar
  29. Bewersdorff, H.W., Dohmann, J., Langowski, J., Lindner, P., Maack, A., Oberthür, R. & Thiel, H., 1989 SANS- and LS-studies on drag-reducing surfactant solutions. Physica B 156 & 157 (1989) 508–511Google Scholar
  30. Bewersdorff, H.W., Frings, B., Lindner, P., Oberthür, R.C. 1986 The conformation of drag reducing micelles from small-angle-neutron-scattering experiments. Rheologica Acta 25 642–646CrossRefGoogle Scholar
  31. Bewersdorff, H.W. & Ohlendorf, D. 1988 The behaviour of drag reducing cationic surfactant solutions. Colloid & Polymer Science 266, 941–953CrossRefGoogle Scholar
  32. Bewersdorff, H.W., Oles, V. & Martischius, F.D. 1986 Kurzfristige Kapazitätserhöhung von Abwasserkanälen. gwf-wasser/abwasser 127, 633–636Google Scholar
  33. Bewersdorff, H.W. & Thiel, H. 1993 Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes. Appl. Sc. Res. 50, 347–368Google Scholar
  34. Bird, R.B., Armstrong, A.C., & Hassager, O. 1987 Dynamics of polymeric liquids. John Wiley and Sons, New YorkGoogle Scholar
  35. Blackwelder, R.F. & Eckelmann, H 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94, 577–594ADSCrossRefGoogle Scholar
  36. Brandrup, J. & Immergut, E.H. 1975 Polymer handbook. Wiley Interscience, NYGoogle Scholar
  37. Brown, D.A 1990 Attemps to achieve drag reduction via electrochemically produced microbubbles. Proc. 2nd Int. Symp. on Performance, Enhancement for maritime applications (ed. Nadolink, R.H.) Univ. of Rhode Island 219–226Google Scholar
  38. Burger, E.D., Chorn, L.G. & Perkins, T.K. (1980): “Studies of drag reduction conducted over broad range of pipeline conditions when flowing Prudhoe Bay Crude Oil”, Journal of Rheology 24, 603–626ADSCrossRefGoogle Scholar
  39. Bushnell, D.M. & Hefner, J.N. 1990 Viscous drag reduction in boundary layers. Progress in Astronautics and Aeronautics 123Google Scholar
  40. Cerf, R 1951 Recherches thé expérimentales sur l’éffet Maxwell des solutions de macromolécules déformable. I Théorie de l’éffet Maxwell des suspensions de sphères élastiques. J Chim Pys 48, 59–84Google Scholar
  41. Chandler, R.W., Lewis, W.R. 1977 Control of sewer overflows by polymer injection. Water Utilities Department, Dallas, Texas, U.S.A., EPA-Report 600/2–77189Google Scholar
  42. Chang, J.C. & Denn, M.M. 1979 An experimental study of isothermal spinning of a Newtonian and a viscoelastic liquid. Journal of Non-Newtonian Fluid Mechanics, 5, 369–385CrossRefGoogle Scholar
  43. Chara, Z., Zakin, J.L., Severa, M. & Myska, J. 1993 Turbulence measurements of drag reducing surfactant systems. Experiments in Fluids 16, 36–41ADSCrossRefGoogle Scholar
  44. Chen, C.-H. P. & Blackwelder, R.F. 1978 Large-scale motion in a turbulent boundary layer: a study ussing temperature contamination. J. Fluid Mech. 89, 1–31ADSzbMATHCrossRefGoogle Scholar
  45. Choi, K.-S. 1990 Marine application on riblets for drag reduction at high Reynolds numbers. Proc. 2nd Int. Symp. on Performance, Enhancement for maritime applications (ed. Nadolink, R.H.) Univ. of Rhode Island 237–244Google Scholar
  46. Coles, N.G. 1974 Drag reduction. Proc Intern. Conf in Cambridge, BHRA Fluid EngineeringGoogle Scholar
  47. Cottrell, F.R., Merrill, E.W. & Smith, K.A 1969 Conformation of polyisobutylene in dilute solution subjected to a hydrodynamic shear field. Journal of Polymer Science A-2, Vol. 7, 1415–1434ADSCrossRefGoogle Scholar
  48. Cox, W.P & Merz, E.H. 1958 Correlation of dynamic and steady flow viscosities. J. Polymer Sc. 28, 619–622ADSCrossRefGoogle Scholar
  49. Cross, M.M. 1965 Rheology of non-Newtonian fluids: a new equation for pseudo-plastic systems. Journal of Colloid Science 20, 412–437CrossRefGoogle Scholar
  50. Debeye, P. & Bueche, A. M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573–579ADSCrossRefGoogle Scholar
  51. Debrule, P.M. & Sabersky, R.H. 1974 Heat transfer and friction coefficients in smooth and rough tubes with dilute polymer solutions. Int. J. of Heat and Mass Transfer 17, 529–540CrossRefGoogle Scholar
  52. de Gennes, P.G. 1976 Dynamic of entangled polymer solutions. I The Rouse model. Macromolécules 9, 587–593ADSCrossRefGoogle Scholar
  53. de Gennes, P.G. 1990 General aspects of polymer chains. In: Introduction to polymer dynamics. Cambridge University Press 1–16Google Scholar
  54. Delgado, A. 1987 Untersuchung der turbulenten Strömung von Polymerlösungen in einem zweidimensionalen Kanal mittels Laser-Doppler-Anemometrie. Ph. D. Thesis of the GH-EssenGoogle Scholar
  55. Den Toonder, J.M.J., Nieuwstadt, F.T.M. & Kuiken, G.D.C. 1994 The role of elongational viscosity in the mechanism of drag reduction by polymer additives. Appl. Sci. Res. (in print)Google Scholar
  56. de Waele, A.I.C. 1923 Viscometry and plastometry. Oil Color Chem. Assoc. J. 6, 33–88Google Scholar
  57. Doi, M. & Edwards, S.F. 1978 Dynamics of rod-like macromolecules in concentrated solution, Journal of the Chemical Society, Faraday Transactions II, 74, 918–932CrossRefGoogle Scholar
  58. Doi, M. & Edwards, S.F. 1986 The theory of polymer dynamics, Clarendon Press, OxfordGoogle Scholar
  59. Donohue, G.L., Tiederman, W.G. & Reischman, M.M. 1972 Flow visualization of the near-wall region in a drag-reducing channel flow. J. Fluid Mech. 56, 559–575ADSCrossRefGoogle Scholar
  60. Durst, F., Haas, R. & Kaczmar, B.U. 1980 Flows of dilute HPAM-solutions in porous media under various solvent conditions. SSB 80/E/158 Univ. of KarlsruheGoogle Scholar
  61. Dunlop, E.H. & Cox, L.R. 1977 Influence of molecular aggregates on drag reduction. Phys. Fluids 20, S203 - S213ADSCrossRefGoogle Scholar
  62. Einstein, A. 1906 Eine neue Bestimmung der Moleküldimension. Ann. Physik, 19, 289–306ADSzbMATHCrossRefGoogle Scholar
  63. Elata, C. & Ippen, A.T. 1961 The dynamics of open channel flow with suspension of neutrally buoyant particles. Tech Rep. 45 Hydrody. Lab. MITGoogle Scholar
  64. Elias, V. & Vocel, J. 19878 Polymer additives for sprinkler irrigation. Communications of the Institute of Hydrodynamics 8 PragueGoogle Scholar
  65. Elias, V. & Vocel, J. 1980a Increasing the capacity of sprinkler irrigation system network by polymer additives. International Commision on Irrigation and Drainage, 11th Congress, 227–230Google Scholar
  66. Elias, V. & Vocel, J. 1980b Long term field experiments with polymer additives for sprinkler irrigation. Communications of the Institue of Hydrodynamics 10, PragueGoogle Scholar
  67. Ellis, H.D. 1970 Effect of shear treatment on drag reducing polymer solutions. Nature 226, 352–353ADSCrossRefGoogle Scholar
  68. Elperlin, I.T., Levental, L.I. & Chesnolov, Y.N. 1971 Decreasing the hydraulic resistance of heating networks. Thermal Engineering 18, 28–32Google Scholar
  69. Flory, P.J. 1971 Priciples of polymer chemistry. Cornell University PressGoogle Scholar
  70. Fankhänel, M. 1989 Druckverlust and Wärmeübergang in Fernwärmesystemen bei Einsatz von mizellaren Widerstandsverminderern. Dissertation, Universität DortmundGoogle Scholar
  71. Franz, N.C. 1972 Fluid additives for improving high velocity jet cutting. Proc. 1st Int. Symp. on jet cutting technology B.H.R.A., A7, 1–11Google Scholar
  72. Frenkiel, F.N., Landahl, M.T. & Lumley, J.L. 1977 Structure of turbulence and drag reduction. Phys. Fluids 20, No 10 Part I I.Google Scholar
  73. Frost, W. & Moulden T.H. 1977 Handbook of turbulence 1. Plenum Press, NY.CrossRefGoogle Scholar
  74. Fuller, G.G., Cathey, C.A., Hubbard, B. & Zebrowski, B.E. 1987 Extensional viscosity measurements for low-viscosity fluids. J. of Rheology 31, 235–245ADSCrossRefGoogle Scholar
  75. Fung, J.C.H., Hunt, J.C.R., Perkins, R.J., Wray, A.A. & Stretch, D. 1991 Defining the zonal structure of turbulence using the pressure and invariants of the deformation tensor. In “Advances in turbulence 3” (eds. A.V. Johansson & P.H. Alfredsson) Springer Verl. Berlin 395–404CrossRefGoogle Scholar
  76. Fung, J.C.H. & Perkins, R.J. 1989 Particle trajectories in turbulent flow generated by true-varying random Fourier modes. In “Advances in turbulence 2” (eds. H.H. Fernholz & H.E. Fiedler) Springer Verl. Berlin 322–328CrossRefGoogle Scholar
  77. Gampert, B. 1985 The influence of polymer additives on velocity and temperature fields. Proc. IUTAM Symp. Essen 1984, Springer Verl. Berlin, Heidelberg, NY, TokioGoogle Scholar
  78. Gampert, B. & Yong, C.K. 1990 The influence of polymer additives on the coherent structure of turbulent channel flow. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 223–232Google Scholar
  79. Gauthier, F., Goldsmith, H.L. & Mason, S.G. 1971 The kinetics of flowing dispersions V. Orientation distributions of cylinders in Newtonian and non-Newtonian systems. Kolloid-Z. Z. für Polymere 248, 1000–1015CrossRefGoogle Scholar
  80. Giesekus, H., Bewersdorff, H.-W., Dembeck, G., Kwade, M., Martischius, F.D. & Scharf, R. 1981 Rheologie. Fortschritte der Verfahrenstechnik 19, 3–28Google Scholar
  81. Giesekus, H., Bewersdorff, H.-W., Frings, B., Hibberd, M., Kleinecke, K., Kwade, M., Möller, D. & Schröder, R. 1985 Rheologie. Fortschritte der Verfahrenstechnik 23, 3–40Google Scholar
  82. Giesekus, H. & Hibberd 1987 Structures of turbulence in drag reducing fluids. In Advances in Transport Process 5 (eds. Mujumdar, A.S. & Mashelkar, R.A.) Wiley Eastern Ltd., New Dehli, 229–284Google Scholar
  83. Golda, J. 1986 Hydraulic transport of coal in pipes with drag reducing additives. Chemical Engineering Communications 43, 53–67CrossRefGoogle Scholar
  84. Granville, P.S. 1977 Scaling-up of pipe flow frictional data for drag reducing polymer solutions. Proc. 2nd Int. Conf. on drag reduction, BHRA (eds.Stephens, H.S. & Clarke, J.A.) Cambridge B1, 1–12Google Scholar
  85. Granville, P.S. 1984 A method for predicting additive drag reduction for small diameter pipe flow. Proc. 3rd Int. Conf. on drag reduction, BHRA (eds. Sellin, R.H.J. & Moses, R.T.) Bristol C3, 1–8Google Scholar
  86. Greene, H.L., Thomas, L.C., Mostardi, R.A. & Nokes, R.F. 1974 Potential biomedical applications of drag reducing agents. Proc. Int. Conf.on Drag reduction Cambridge, BHRA (ed. N.G. Coles). H2–17–27Google Scholar
  87. Gust, G. 1976 Observation on turbulent-drag reduction in a dilute suspension of clay in sea-water. J. Fluid Mech. 75, 29–47ADSCrossRefGoogle Scholar
  88. Gyr, A. 1965 Ein Tropfenakkreszenzmodell in Atmosphäre von homogen isotroper Turbulenz. ZAMP 16, 721–739ADSCrossRefGoogle Scholar
  89. Gyr, A. 1967 The behaviour of the turbulent flow in a 2-dimensional open channel in presence of suspended particles. Proc. 12th Int. Congr. IAHR B2, 9–16Google Scholar
  90. Gyr, A. 1968 Analogy between vortex-stretching by drag-reducing additives and vortex stretching by fine suspensions. Nature 219, 928–929ADSCrossRefGoogle Scholar
  91. Gyr, A. 1976 Burst cycle and drag reduction. J. appl. math. & Phys. (ZAMP) 27, 717–725CrossRefGoogle Scholar
  92. Gyr, A. 1990 Structure of turbulence and drag reduction. Proc. IUTAM Symp.Zürich 1989, Springer Verl. Berlin, Heidelberg, N.Y., London, Paris, Tokyo and Hong-KongCrossRefGoogle Scholar
  93. Gyr, A., Bewersdorff H.-W., Hoyer, K. & Tsinober, A. 1993 An investigation of possible mechanisms of heterogeneous drag reduction in pipe and channel flows. In “Near wall turbulent flows” Elsevier Sc. Pub. (ed. R.M.C. So, C.G. Speziale & B.E. Launder ), 679–687Google Scholar
  94. Gyr, A. & Müller, A. 1975 Alteration of structures of sublayer flow in dilute polymer solutions. Nature 253, 185–187ADSCrossRefGoogle Scholar
  95. Gyr, A. & Schmidt, W. 1989 Stabilisation of sediment transport in pipes by drag reducing additives. In “Drag reduction in fluid flows” Ellis Horwood Publ. (eds R.H.J. Sellin & R.T. Moses ), 223–230Google Scholar
  96. Harlen, O.G. & Koch, D.L. 1993 Simple shear flow of a suspension of fibres in a dilute polymer solution at high Deborah number. J. Fluid Mech. 252, 187–207ADSzbMATHCrossRefGoogle Scholar
  97. Heen, R. 1993 Untersuchung der Orientierung und Assoziatbildung von Tensid- und Polymerlösungen, Dissertation, University of DortmundGoogle Scholar
  98. Hinch, E.J. 1976 The distortion of a flexible inextensible thread in a shearing flow. J. Fluid Mech. 74, 317–333ADSzbMATHCrossRefGoogle Scholar
  99. Hinch, E.J. 1977 Mechanical models of dilute polymer solutions in strong flows. Phys. of Fluids 20, S22 - S30ADSCrossRefGoogle Scholar
  100. Hinch, E.J. & Elata C. 1979 Heterogeneity of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 5, 411–425CrossRefGoogle Scholar
  101. Hinch, E.J. & Leal, L.G 1976 Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76, 187–208ADSzbMATHCrossRefGoogle Scholar
  102. Hino, M. 1963 Turbulent flow with suspended particles. ASCE 89 Hy 4, 161–185Google Scholar
  103. Hosaka, M. 1978 Theoretical analysis of turbulent gas-solid suspension flow. J. of Nuclear Sc. 15, 212–218Google Scholar
  104. Hough, G.R. 1980 Viscous flow drag reduction. Progress in Astronautics and Aeronautics 72 Google Scholar
  105. Hoyer, K. 1994 Heterogene Widerstandsverminderung in turbulenten Rohrströmungen. Diss ETH 10525Google Scholar
  106. Hoyer, K., Bewersdorff, H.-W. & Gyr, A. 1992 Studies on mechanisms of heterogeneous drag reduction. In theoretical and applied rheology (eds. P. Moldenaers & R. Keunings) Elsevier Amsterdam 1, 183–188Google Scholar
  107. Hoyt, W.H., Taylor, J.J. & Runge, C.D. 1974 The structure of jets of water and polymer solution in air. J. Fluid Mech. 63, 635–640ADSCrossRefGoogle Scholar
  108. Hoyt, W.H. & Taylor, J.J. 1974 A photographic study of polymer solution: jet in air. Proc. Int. Conf. on Drag Reduction Cambridge B.H.R.A. E 3, 1–13Google Scholar
  109. Hoyt, J.W. & Sellin, R.H.J. 1991 Polymer “threads” and drag reduction. Rheol. Acta 30, 307–315CrossRefGoogle Scholar
  110. Hussain, A.K.M.F. & Reynolds, W.C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241–258ADSCrossRefGoogle Scholar
  111. James, D.F., McLean, B.D. & Saringer, J.H. 1987 Presheared extensional flow of dilute polymer solutions. Journal of Rheology, 31, 453–481ADSCrossRefGoogle Scholar
  112. Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Poc. Roy. Soc. London A 102, 161–179ADSCrossRefGoogle Scholar
  113. Kane, R.S., Weinbaum, S. & Pfeffer, R. 1973 Characteristics of dilute gas-solid suspensions in drag reducing flows. Proc. 2nd Int. Conf. on pneumatic transport of solids in pipes, BHRA Fluid Engng. Cranfield, paper C3Google Scholar
  114. Kane, R.S. 1990 Drag reduction by particle addition. Viscous drag reduction in boundary layers. (ed. Bushnell, D.M. & Hefner, J.N.) Progress in Astron. & Aeron. 123, 433–456Google Scholar
  115. Kline, S.J. & Robinson, S.K. 1990 Turbulent boundary layer structure: progress, status, and challenges. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989 Springer Verl., 3–22Google Scholar
  116. Kuhn, W. & Kuhn, H. 1945 Bedeutung beschränkt freier Drehbarkeit für die Viskosität und Strömungsdoppelbrechung von Fadenmolekellösungen I. Heiv. Chim. Acta 28, 1533–1579CrossRefGoogle Scholar
  117. Landahl, M.T. 1977 Dynamics of boundary layer turbulence and the mechanmism of drag reduction. Phys. Fluids 20, S55 - S63ADSCrossRefGoogle Scholar
  118. Landahl, M.T. 1990 Hydrodynamic instability and coherent structures in turbulence. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 371–397Google Scholar
  119. Laufer, J. 1975 New trends in experimental turbulence research. Ann. Rev. Fluid Mech. 7, 307–326ADSCrossRefGoogle Scholar
  120. Leal, L.G. 1975 The slow motion of slender rod-like particles in a second order fluid. J. Fluid Mech. 69, 305–337ADSzbMATHCrossRefGoogle Scholar
  121. Leca, A. & Leca, M. 1984 Drag reduction and heat transfer measurements with polyacraylamides on a model of a district heating system. Drag Reduction (eds. Sellin, R.H.J., Moses, R.T.) University of Bristol D8 1–6Google Scholar
  122. Lee, P.F.W. & Duffy, G.G. 1976 Relationship between velocity profiles and drag reduction in turbulent fibre suspension flow. AIChE J. 22, 750–753CrossRefGoogle Scholar
  123. Lee, W.K., Vaseleski, R.C. & Metzner, A.B. 1974 Turbulent drag reduction in polymer solutions containing suspended fibres. AIChE J. 20, 128–133CrossRefGoogle Scholar
  124. Legner, H.H. 1990 Marine applications of microbubble drag reduction. Proc. 2nd Int. Symp. on Performance, Enhancement for maritime applications (ed. Nadolink, R.H.) Univ. of Rhode Island 227–236Google Scholar
  125. Lindner, P., Bewersdorff, H.W., Heen, R., Sittart, P., Thiel, H., Langowski, J. & Oberthür, R., 1990 Drag-reducing surfactant solutions in laminar and turbulent flow investigated by small-angle neutron and light scattering. Progress in Colloid & Polymer Science 81, 107–112CrossRefGoogle Scholar
  126. Lindgren, E.R. & Hoot, T.G. 1968 Effects of dilute high molecular weight polymers on turbulent flows of water in very rough pipe. Trans. ASME, J. Appl. Mech. 35, 417–418ADSCrossRefGoogle Scholar
  127. Löbl, M., Thum, H. & Hoffmann, H. 1986 Flow birefringence measurements on viscoelastic surfactant solutions, Berichte der Bunsengesellschaft für Physikalische Chemie 88, 1102–1106Google Scholar
  128. Luchik, T.S. & Tiederman, W.G. 1988 Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. 190, 241–263ADSCrossRefGoogle Scholar
  129. Luchini, P., Manzo, F & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109zbMATHGoogle Scholar
  130. Lumley, J.L. 1964 The reduction of skin friction drag. 5th Symp. of naval hydrodynamics, Bergen, NorwayGoogle Scholar
  131. Lumley, J.L. 1969 Drag reduction by additives. Ann. Rev. Fluid Mech. 1, 367–384ADSCrossRefGoogle Scholar
  132. Lumley, J.L. 1971 Some comments on the energy method. In: “Developments in Mechanics” University of Notre Dame 6, 63–88Google Scholar
  133. Lumley, J.L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polymer Sci. 7, 263–290Google Scholar
  134. Lumley, J.L. 1977 Drag reduction in two phase and polymer flows. Phys. Fluids 20, S64- S71Google Scholar
  135. Lumley, J.L. & Kubo, I. 1985 Turbulent drag reduction by polymer additives: A survey In: The influence of polymer additives on velocity and temperature fields. Proc. IUTAM Symp. Essen 1984. (Ed. Gampert, B.) Springer Verl. Berlin, Heidelberg, NY, Tokio 3–21Google Scholar
  136. Lundgren, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193–2203ADSzbMATHCrossRefGoogle Scholar
  137. Lycko 1993 Zum Einfluß eines kationischen Tensids auf die Turbulenzstruktur in den Grenzschichten an einer glatten und einer rauhen Wand. University of DortmundGoogle Scholar
  138. Lyons, S.L., Nikolaides, C. & Hanratty, T.J. 1988 The size of turbulent eddies close to the wall. A. I. Ch.E. J. 34, 938–945CrossRefGoogle Scholar
  139. Maschmeyer, R.V. & Hill, C.T. 1974 The rheology of concentrated suspensions of fibres. Adv. Chem. Ser. 13, 95–105CrossRefGoogle Scholar
  140. Martischius, F.-D. 1982 Das rheologische Verhalten von Polymerlösungen in Scher- und Dehnströmungen. Rheologica Acta, 21, 288–310CrossRefGoogle Scholar
  141. Martischius, F. D. & Heide, W., 1984 Drag reduction in heating systems: stabilization of polyacrylamide solutions up to temperatures of 1500C“, in: Drag reduction (eds. Sellin, R.H.J. & Moses, R.T. ), University of Bristol, D9 1–3Google Scholar
  142. Matthys, E.F. 1988 Measurement of velocity for polymeric Fluids by photochromic flow-visualization technique: the tubeless siphon. J. of Rheology 32, 773–788ADSCrossRefGoogle Scholar
  143. McComb, W.D. 1990 The Physics of fluid turbulence, Oxford Eng. Sc. Series 25, Oxford: Claredon.Google Scholar
  144. McComb, W.D. & Rabie, L.H. 1982 Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. AIChE J. 28, 547–565CrossRefGoogle Scholar
  145. McComb, W.D. & Chan, K.T.J. 1985 Laser-Doppler anemometer measurements of turbulent structure in drag-reducing fibre suspensions. J. Fluid Mech. 152, 455–478ADSCrossRefGoogle Scholar
  146. McNally, W.A. 1968 Heat and momentum transfer in dilute poyethylene oxide solutions. Ph.D. Thesis, University of Rhode IslandGoogle Scholar
  147. Meissner, J. 1972 Development of a universal extensional rheometer for the uniaxial extension of polymer melts. Trans. Society of Rheology 16, 405–420ADSCrossRefGoogle Scholar
  148. Mih, W. & Parker, J. 1967 Velocity profile measurements and a phenomenological description of turbulent fiber suspension pipe flow. TAPPI 50, 237–246Google Scholar
  149. Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 44, 705–719ADSCrossRefGoogle Scholar
  150. Moffatt, H.K. 1990 Fixed points of turbulent dynamical systems and suppression of nonlinearity. In “Whither turbulence?; Turbulence at the crossroads”. Lecture notes in Physics 357, (ed. J.L. Lumley ), Springer Verl. 250–257CrossRefGoogle Scholar
  151. Moffatt, H.K. 1993 Spiral structures in turbulent flow. In “New approaches and concepts in turbulence”, (eds. Th. Dracos & A. Tsinober ), Birkhäuser 121–129CrossRefGoogle Scholar
  152. Moffatt, H.K. & Tsinober, A. 1992 Helicity in laminar and turbulent flow.Annu. Rev. Fluid Mech. 24, 281–312MathSciNetADSCrossRefGoogle Scholar
  153. Moreau, J.-J. 1961 Constants d’un ilot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. Paris 252, 2810–2812MathSciNetzbMATHGoogle Scholar
  154. Morrison, W.R.B., Bullock, K.J. & Kronauer, R.E. 1971 Experimental evidence of waves in the sublayer. J. Fluid Mech. 47, 639–656ADSCrossRefGoogle Scholar
  155. Motier, J.F. & Prilutski, D.J. 1984 Case histories of polymer drag reduction in crude oil pipelines. In Sellin & Moses 1984, F2 1–14Google Scholar
  156. J.F. Motier, A.M. Carrier (1989): “Recent studies on polymer drag reduction in commercial pipelines” in: Sellin, R.H.J., Moses, R.T. (eds.) “Drag reduction in fluid flows”, Ellis Horwood, Chichester, 197–204Google Scholar
  157. Moyls, A.L. & Sabersky, R.H. 1978 Heat transfer and friction coefficients for dilute suspensions of asbestos fibers. Int. J. Heat Mass Transfer 21, 7–14CrossRefGoogle Scholar
  158. Münstedt, H. 1975 Viscoelasticity of polysterene melts in tensile creep experiments. Rheologica Acta 14, 1077–1088CrossRefGoogle Scholar
  159. Mysels, K.J. 1949 U.S. Patent 2, 492, 173Google Scholar
  160. Nicodemo, L. & Nicolais, L 1974 Viscosity of concentrated fibre suspensions. Chem. Engineering J. 8, 155–156CrossRefGoogle Scholar
  161. Nihoul, J.C.J. 1977 Turbulent boundary layer bearing silt in suspension. Phys. Fluids 20, S197 - S202ADSCrossRefGoogle Scholar
  162. Odell, J.A., Keller, A & Miles, M.J. 1984 Flow induced polymer degradation: Chain halving, a new method for determining molecular weight distribution. Drag reduction. (ed. R.H.J. Sellin & R.T. Moses) University of Bristol A. 3: 1–2Google Scholar
  163. Offen, G.R. & Kline, S.J. (1975) A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70, 209–228ADSCrossRefGoogle Scholar
  164. Ohlendorf, D. 1985 Reibungsverminderung in turbulenten Strömungen durch Tenside. 312. Dechema Kolloquium “Viskoelastische Tensidlösungen”, 17.1.1985, FrankfurtGoogle Scholar
  165. Oies, V. 1989 Der Einfluß widerstandsvermindernder Additive auf den Fließvorgang in Abwasserkanälen“, Dissertation, University of Dortmund, GermanyGoogle Scholar
  166. Oliver, D.R. & Ashton, R.C. 1976 The triple jet: influence of shear on the stretching of polymer solutions. Journal of Non-Newtonian Fluid Mechanics 1, 93–104CrossRefGoogle Scholar
  167. Olivier, D.R. & Bakhtiyarov, S.I. 1983 Drag reduction in exceptionally dilute polymer solutions. J. Non-Newtonian Fluid Mech. 12, 113–118CrossRefGoogle Scholar
  168. Ostwald, 1925 Ueber die Geschwindigkeitsfunktion der Viskosität disperser systeme. I Kolloid-Z. 36, 99–117CrossRefGoogle Scholar
  169. Pal, R. 1993 Pipeline flow of unstable and surfactant-stabilized emulsions. AIChE J. 39, 1754–1764CrossRefGoogle Scholar
  170. Panchev, S. 1977 Random functions and turbulence. Pergamon Press.Google Scholar
  171. Perry, A.E., Schofield, W.H. & Joubert, P.N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383–413ADSCrossRefGoogle Scholar
  172. Perry, A.E. & Chong, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217ADSzbMATHCrossRefGoogle Scholar
  173. Perry, A.E. & Chong, M.S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech. 19, 125–155ADSCrossRefGoogle Scholar
  174. Pfeffer, R. & Kane, R.S. 1974 A review of drag reductionin dilute gas-solids suspension flow in tubes. (ed. N.G. Coles) Proc. Int. Conf. Drag Reduction, Cambridge BHRA, Fl-1–21Google Scholar
  175. Poliert, J. 1978 The ecomomic studies for drag reduction utilization in Czechoslovakia, CNRS Round Table, Strasbourg, not printedGoogle Scholar
  176. Poliert, J. 1985 Today and future possibilities of industrial applications of drag reduction. The influence of polymeric additives on velocity and temperature fields (ed. B. Gampert), Springer, Berlin, 183–198Google Scholar
  177. Poliert, J., & Kolar, V. 1977 Sludges and their transport by pipelines. Symp. of Council of Material Economic Help. Prague, paper 17Google Scholar
  178. Poliert, J., Kolar, V. & Havlik, V. 1982a Drag reduction and its engineering applications. Acta Polytechnica, Series of Technical University in Prague, 133–142Google Scholar
  179. Poliert, J. & Urbanek, M. 1982b Possibilities of decreasing friction losses in primary heating plant distribution networks by means of polymer additives. Vodni Hodopodastvi, Series B, 32, 275–278Google Scholar
  180. Povkh, I.L., Stupin, A.B., Maksjutenko, S.N., Aslanov, P.V., Roshchin, E.A. & Tur, A.N. 1975 Study of the turbulent flow of solutions of surface-active materials by means of a Laser-anemometer (in Russian) InzhenerniFizicheskii Zhurnal 29, 853–856Google Scholar
  181. Povkh, I.L., Stupin, A.B., Maksjutenko, S.N., Aslanov, P.V. & Simonenko, A.P. 1980 Features of turbulent flows of surfactant solutions of micelle forming surfactants (in Russian) Mekhanika turbulentnykh potokov, Tretja vsesojusnaja Konferenzija (1977), Moscow, 44–69Google Scholar
  182. Povkh, I.L., Stupin, A.V. & Aslanov, P.V. 1988 Structure of turbulence in flows with surfactant and polymeric additives, Fluid-Mechanics–Soviet Research 17, 65–79Google Scholar
  183. Radin, I., Zakin, J.L. & Patterson, G.K. 1975 Drag reduction in solid-fluid systems. AIChE J. 21, 358–371CrossRefGoogle Scholar
  184. Rehage, H., Wunderlich, I. & Hoffmann, H. 1986 Progress in Colloid & Polymer Science 72, 51CrossRefGoogle Scholar
  185. Reischman, M.M. & Tiederman, W.G. 1975 Laser-Doppler anemometer measurements in drag reducing channel flows. J. Fluid Mech. 70, 369–392ADSCrossRefGoogle Scholar
  186. Riediger, S. 1988 The influence of drag reducing additives on the coherent structures in a face shear layer.2nd Europ. Turb. Conf., Berlin, see also Proc. 6th Symp. Turb. Shear Flows, Toulouse 1987, 14.5.1–14. 5. 2Google Scholar
  187. Robertson, A.A. & Mason, S.G. 1957 The flow characteristics of dilute fiber suspensions. TAPPI 40, 326–334Google Scholar
  188. Robinson, S.K. 1990 A review of vortex structures and associated coherent motions in turbulent boundary layers. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 23–50Google Scholar
  189. Robinson, S.K. 1991 The kinematics of turbulent boundary layer structure. NASA Tech. Memorandum 103859, 479 pagesGoogle Scholar
  190. Rose, G.D., Foster, K.L., Slocum, V.L. & Lenhart, J.G. 1984 Drag reduction and heat transfer characteristics of viscoelastic surfactant formulations. In: Drag Reduction (eds. Sellin R.H.J., Moses, R.T. ), University of Bristol D6 1–7Google Scholar
  191. Rouse, P.E. 1953 A theory of linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280ADSCrossRefGoogle Scholar
  192. Sankar, G., Singh, R.P. & Singh, J. 1982 Application of drag reducing polymers in reducing energy requirements of sprinkler irrigation systems II. Journal Agricultural Engineering 19, 9–14Google Scholar
  193. Savins, J.G. 1967 A stress-controlled drag-reduction phenomenon. Rheolgica Acta 6, 323–330CrossRefGoogle Scholar
  194. Schmid, A. 1985 Wandnahe turbulente Bewegungsabläufe und ihre Bedeutung für die Riffelbildung. Ph. D. Thesis ETHZ Nr. 7697Google Scholar
  195. Schmitt, W. 1989 Riffelbildung und Sedimenttransport in Rohrströmungen in Abhängigkeit der Dichte des Sohlenmaterials für Reinwasser und Polymerlösungen. Ph. D. Thesis Nr. 8895Google Scholar
  196. Schümmer, P. & Thielen, W. 1980 Structure of turbulence in viscoelastic fluids. Chem. Eng. Commun. 4, 593–606CrossRefGoogle Scholar
  197. Sellin, R.H.J. 1977 Increasing sewer capacity by polymer dosing. Proc. Inststn. Civ. Engrs. 63, part 2, 49–67CrossRefGoogle Scholar
  198. Sellin, R.H.J. 1978 Drag reduction in sewers: First results from a permanent installation. Journal of Hydraulic Research 16, 357–371CrossRefGoogle Scholar
  199. Sellin, R.H.J. 1980 Polymer drag reduction in large pipes and sewers. Results of recent field trials. Journal of Rheology 24, 667–684ADSCrossRefGoogle Scholar
  200. Sellin, R.H.J., Hoyt, J.W. & Scrivener, O. 1982 The effect of drag reducing additives on fluid flows and their industrial application. Part 1: Basic aspects, J. Hydr. Res. 20, 29–68. Part 2: Present applications and future proposals. J. Hydr. Res. 20, 235–292Google Scholar
  201. Sellin, R.H.J. & Moses, R.T. 1984 Drag reduction. Proc.Intern. Conf. in Bristol, University of BristolGoogle Scholar
  202. Sellin, R.H.J. & Moses, R.T. 1989 Drag reduction in fluid flows. Proc.Intern. Conf. in Davos, IAHR, Ellis Horwood, ChichesterGoogle Scholar
  203. Shaqfeh, E.S.G. & Koch, D.L. 1990 Orientational dispersion of fibers in extensional flows. Phys. Fluids A 2, 1077–1093MathSciNetADSzbMATHCrossRefGoogle Scholar
  204. Singh, R.P., Singh, J. & Holey, S.A. 1979 Application of drag reducing polymers in reducing energy requirements of sprinkler irrigation systems I, Journal Agricultural Engineering 16, 53–59Google Scholar
  205. Singh, R.P., Singh, J., Kumar, D., Kumar, A. & Deshmukh, S.R. 1989 Novel applications of drag reducing polymers in agriculture. In: Drag reduction in fluid flows (eds. Sellin, R.H.J., Moses, R.T.) Ellis Horwood, Chichester, 240–246 )Google Scholar
  206. Sittart, P. & Bewersdorff, H.-W. 1989 Upscaling in heterogeneous drag reduction systems. In: Proc 3rd European Rheology Conf., (ed. D.R. Oliver) Elsevier, London, 450–452Google Scholar
  207. Smith, C.R., Walker, J.D.A., Haidari, A.H. & Taylor, B.K. 1990 Hairpin vortices in turbulent boundary layers: The implications for reducing surface drag. In: Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 51–58Google Scholar
  208. Smith, R.E. & Tiederman, W.G. 1991 The mechanism of polymer thread drag reduction. Rheol. Acta 30, 103–113CrossRefGoogle Scholar
  209. Spangler, J.G. (1969) Studies of viscous drag reduction with polymers including turbulence measurements and roughness effects. In: “Viscous Drag Reduction” (ed. C.S. Wells ), 131–157Google Scholar
  210. Steiff, A., Althaus, W., Weber, M. & Weispach, P.M. 1989 Applications of drag reducing additives in district heating systems–present state of investigations. Drag reduction in fluid flows (eds. Sellin, R.H.J., Moses, R.T.), Ellis Horwood, Chichester, 247–254Google Scholar
  211. Stephens, H.S. & Clarke J.A. 1977 Drag reduction. Proc.Intern. Conference in Cambridge, BHRA Fluid EngineeringGoogle Scholar
  212. Tanner, R.I. 1985 Engineering Rheology. Oxford University Press, OxfordGoogle Scholar
  213. Taylor, G.I. 1960 Conditions at the surface of a hot body exposed to the wind. Cambridge Univ. Press, Scientific papers, II, 27–32Google Scholar
  214. Tennekes, H. 1966 Wall region in turbulent shear flow of non-Newtonian fluids. Phys. Fluids 9, 872–878ADSCrossRefGoogle Scholar
  215. Tennekes, H. & Lumley, J.L. 1972, A first course in turbulence. MIT Press.Google Scholar
  216. Thorne, P.F. 1974 Drag reduction in fire-fighting. Proc. Int. Conf on Drag reduction Cambridge. B.H.R.A. H1, 1–16Google Scholar
  217. Tiederman, W.G. 1974 A contribution on the effect on drag reduction upon flow in the near-wall region. Proc. Int. Conf. Drag reduction, Cambridge (ed. N.G. Coles ), BHRA A79–81Google Scholar
  218. Tirtantmadja, V. & Sridhar, T. 1993 A filament stretching device for measurements of extensional viscosity. J. of Rheology 35, 1081–1102ADSCrossRefGoogle Scholar
  219. Tomita, Y. & Jotaki, T. 1977 Effects of elongational viscosity of polymer solution on Taylor- Görtler vortices. Phys. Fluids 20, S75 - S77ADSCrossRefGoogle Scholar
  220. Toms, B.A. 1948 Some observations on the flow of linear polymer solutions through strait tubes at large Reynolds numbers. North Holland, Amsterdam, Proc. 1st Intern. Congr. on Rheology 2, 135–141Google Scholar
  221. Trouton, F.T. 1906 On the coefficient of viscous traction and its relation to that of viscosity. Proc. Royal Soc. A77, 426–440ADSCrossRefGoogle Scholar
  222. Tsinober, A. 1989 On one property of Lamb vector in isotropic turbulent flow. Phys. Fluids A 2, 484–486MathSciNetADSCrossRefGoogle Scholar
  223. Tsinober, A. 1990 Turbulent drag reduction versus structure of turbulence. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 313–340Google Scholar
  224. Tsinober, A. 1990 MHD flow drag reduction. Viscous drag reduction in boundary layers. (ed. Bushnell, D.M. & Hefner, J.N.) Progress in Astron. & Aeron. 123, 327–349Google Scholar
  225. Usui, H. 1990 Drag reduction caused by the injection of a polymer solution into a pipe flow. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 257–274Google Scholar
  226. Usui, H., Sakuma, Y. & Saeky, T. 1993 Reynolds stress defect in polymer drag reducing flow. 9th Symposium “Turbulent Shear Flow” Kyoto, 20–3, 1–6Google Scholar
  227. Virk, P.S. 1971 Drag reduction in rough pipes. J. Fluid Mech. 45, 225–246ADSCrossRefGoogle Scholar
  228. Virk, P.S. 1975 Drag reduction fundamentals. AIChE 21, 625–656CrossRefGoogle Scholar
  229. Virk, P.S. & Wagger, D.L. 1990 Aspects of mechanisms in type B drag reduction. Structure of turbulence and drag reduction (ed. A. Gyr) IUTAM Symp. Zürich 1989. Springer Verl., 201–213Google Scholar
  230. Vissmann, K. & Bewersdorff, H.-W. 1990 The influence of pre-shearing on the elongational behaviour of dilute polymer and surfactant solutions. Journal of Non-Newtonian Fluid Mech., 34, 289–317CrossRefGoogle Scholar
  231. Vrahopoulou, E.P. & McHugh, A.J. 1987 Shear-thickening and structure formation in polymer solutions. Journal of Non-Newtonian Fluid Mech., 25, 157–175CrossRefGoogle Scholar
  232. Wade, R.H. 1972 Symposium on polymer reduction, New York, U.S.A., paper 13 c Western Company 1969 Polymers for sewer control, Report no. WP-20–22, U.S. Federal Water Pollution Control Administration, Richardson, Texas, U.S.A.Google Scholar
  233. Wilmarth, W.W., Wei, T. & Lee, C.O. 1987 Laser anemometer measurements of Reynolds stresses in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids, 30, 933–935ADSCrossRefGoogle Scholar
  234. Wolff, C. 1982 Non-Newtonian behaviour of associations of macromolecules in dilute solutions. Advances in Colloid and Interface Science, 17, 263–274CrossRefGoogle Scholar
  235. Wray, A.A. & Hunt, J.C.R. (1990) Algorithms for classification of turbulent structures. In “Topological fluid mechanics”, (eds H.K. Moffatt & A. Tsinober) 95–104 + one colour plateGoogle Scholar
  236. Wunderlich, A.M. & James, D.F. 1987 Extensional flow resistance of dilute polyacrylamide and surfactant solutions. Rheologica Acta, 26, 522–531CrossRefGoogle Scholar
  237. Yong, C.K. 1990 Zur Wirkung von Polymer-Additiven auf die kohärente Struktur turbulenter Kanalströmungen. Ph. D. Thesis at the University of Essen.Google Scholar
  238. Zakin, J.L., Ni, C.C., Hansen, R.J. & Reischman, M.M. 1977 Laser Doppler velocimetry studies of early turbulence. Phys. Fluids 20, S85 - S88ADSCrossRefGoogle Scholar
  239. Zimm, B.H. 1956 Dynamics of polymer molecules in dilute solutions: vciscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269–278MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • A. Gyr
    • 1
  • H.-W. Bewersdorff
    • 2
  1. 1.Institute of Hydromechanics and Water Resources ManagementSwiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.Department of Chemistry and Chemical EngineeringFachhochschule LausitzSenftenbergGermany

Personalised recommendations