Methods of Quantum Field Theory in the Physics of Subsurface Solute Transport



The stochastic theory of subsurface solute transport has received stimulus recently from modeling techniques originating in quantum field theory (QFT), resulting in new calculations of the solute macrodispersion tensor that derive from the solving Dyson equation with a subsequent renormalization group analysis. In this paper, we offer a critical evaluation of these techniques as they relate specifically to the derivation of a field-scale advection-dispersion equation. An approximate Dyson equation satisfied by the ensemble-average solute concentration for tracer movement in a heterogeneous porous medium is derived and shown to be equivalent to a truncated cumulant expansion of the standard stochastic partial differential equation which describes the same phenomenon. The full Dyson equation formalism, although exact, is of no importance to the derivation of an improved field-scale advection-dispersion equation. Similarly, renormalization group analysis of the macrodispersion tensor has not yet provided results that go beyond what is available currently from the cumulant expansion approach.

Key words

Advection-dispersion equation cumulant expansion Dyson equation macrodispersion renormalization group solute transport. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avellaneda, M. and Majda, A. G.: 1992, Approximate and exact renormalization theories for a model for turbulent transport, Phys. Fluids A 4, 41 - 57.CrossRefGoogle Scholar
  2. Cannon, J. R.: 1984, The One-Dimensional Heat Equation, Addison-Wesley, Menlo Park, CA.Google Scholar
  3. Chu, S. -Y. and Sposito, G.: 1980, 1981, A derivation of the macroscopic solute transport equation for homogeneous, saturated, porous media, Water Resour. Res. 16, 542 - 546, 17, 1238.Google Scholar
  4. Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer, New York.CrossRefGoogle Scholar
  5. Dagan, G.: 1998, Comment on “Renormalization group analysis of macrodispersion in a directed random flow” by U. Jaekel and H. Vereecken, Water Resour. Res. 34, 3197 - 3198.CrossRefGoogle Scholar
  6. Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1994, Perturbation schemes for flow in random media, J. Phys. A 27, 5135 - 5144.CrossRefGoogle Scholar
  7. Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1995, Perturbation theory for effective diffusivity in random gradient flows, J. Phys. A 28, 1235 - 1242.CrossRefGoogle Scholar
  8. Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1996, Renormalization of drift and diffusivity in random gradient flows, J. Phys. A 29, 7867 - 7879.CrossRefGoogle Scholar
  9. Eyink, G. L.: 1994, The renormalization group method in statistical hydrodynamics, Phys. Fluids 6, 3063 - 3078.CrossRefGoogle Scholar
  10. Fox, R. F.: 1976, Critique of the generalized cumulant expansion method, J. Math. Phys. 17, 1148 - 1153.CrossRefGoogle Scholar
  11. Gelhar, L. W. and Axness, C. L.: 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19, 161 - 180.CrossRefGoogle Scholar
  12. Glimm, J, Lindquist, W. B., Pereira, F. and Zhang, Q 1993, A theory of macrodispersion for the scale-up problem, Transport in Porous Media 13, 97 - 122.CrossRefGoogle Scholar
  13. Gutjahr, A.: 1984, Stochastic models of subsurface flow: Log linearized Gaussian models are ‘exact’ for covariances, Water Resour. Res. 20, 1909 - 1912.CrossRefGoogle Scholar
  14. Hristopulos, D. T. and Christakos, G.: 1997, Diagrammatic theory of effective hydraulic conductivity, Stoch. Hydrol. Hydraul. 11, 369 - 395.CrossRefGoogle Scholar
  15. Jaekel, U. and Vereecken, H.: 1997, Renormalization group analysis of macrodispersion in a directed random flow, Water Resour. Res. 33, 2287 - 2299.CrossRefGoogle Scholar
  16. Jaekel, U., Schwarze, H. and Vereecken, H.: 1998, Reply, Water Resour. Res. 34, 3199 - 3200.CrossRefGoogle Scholar
  17. Kabala, Z. J. and Sposito, G.: 1991, A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer, Water Resour. Res. 27, 341 - 350.CrossRefGoogle Scholar
  18. Kabala, Z. J. and Sposito, G.: 1998, Technical comment on: “On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers,” by M.L. Kavvas and A. Karakas, J. Hydro!. 207, 136 - 138.CrossRefGoogle Scholar
  19. Kavvas, M. L. and Karakas, A.: 1996, On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers, J. Hydrol. 179, 321 - 325.CrossRefGoogle Scholar
  20. Kavvas, M. L. and Karakas, A.: 1998, Response to comments of Z. J. Kabala and G. Sposito, J. Hydrol. 207, 139 - 143.CrossRefGoogle Scholar
  21. King, P. R.: 1987, The use of field theoretic methods for the study of flow in a heterogeneous porous medium, J. Phys. A 20, 3935 - 3947.CrossRefGoogle Scholar
  22. King, P. R.: 1989, The use of renormalization for calculating effective permeability, Transport in Porous Media 4, 37 - 58.CrossRefGoogle Scholar
  23. King, P. R., Muggeridge, A. H. and Price, W. G.: 1993, Renormalization calculations of immiscible flow, Transport in Porous Media 12, 237 - 260.CrossRefGoogle Scholar
  24. King, P. R.: 1996, Upscaling permeability: Error analysis for renormalization, Transport in Porous Media 23, 337 - 354.CrossRefGoogle Scholar
  25. Kubo, R.: 1962, Generalized cumulant expansion method, J. Phys. Soc. Japan, 17, 1100 - 1120.CrossRefGoogle Scholar
  26. Kubo, R.: 1963, Stochastic Liouville equations, J. Math. Phys. 4, 174 - 183.CrossRefGoogle Scholar
  27. Ma, S. -K.: 1976, Modern Theory of Critical Phenomena, Benjamin, Reading, MA.Google Scholar
  28. Matheron, G. and de Marsily, G.: 1980, Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 901 - 917.CrossRefGoogle Scholar
  29. McComb, W. D.: 1992, The Physics of Fluid Turbulence,Clarendon Press, Oxford, UK.Google Scholar
  30. Nötinger, B. and Gautier, Y.: 1998, Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs, Advan. Water Resour. 21, 581 - 590.CrossRefGoogle Scholar
  31. Peskin, M. E. and Schroeder, D. V.:1995, An Introduction to Quantum Field Theory,Addison-Wesley, Reading, MA.Google Scholar
  32. Rehfeldt, K. R. and Gelhar, L. W.: 1992, Stochastic analysis of dispersion in unsteady flow in heterogeneous aquifers, Water Resour. Res. 28, 2085 - 2099.CrossRefGoogle Scholar
  33. Reich!, L. E.: 1988, A Modern Course in Statistical Physics, Univ. of Texas Press, Austin, TX, pp. 435 - 437.Google Scholar
  34. Smith, L. M. and Woodruff, S. L.: 1998, Renormalization-group analysis of turbulence, Annu. Rev. Fluid Mech. 30, 275 - 310.CrossRefGoogle Scholar
  35. Sposito, G., Jury, W. A. and Gupta, V. K.: 1986, Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils, Water Resour. Res. 22, 77 - 88.CrossRefGoogle Scholar
  36. Sposito, G. and Barry, D. A.: 1987, On the Dagan model of solute transport in groundwater: Foundational aspects, Water Resour. Res. 23, 1867 - 1875.CrossRefGoogle Scholar
  37. Sposito, G., Barry, D. A. and Kabala, Z. J.: 1991, Stochastic differential equations in the theory of solute transport through inhomogeneous porous media, Advan. Porous Media 1, 295 - 309.Google Scholar
  38. Sposito, G.: 1999, The statistical physics of subsurface solute transport, Chapter 3 in: M. Par-lange and J.W. Hopmans (eds.), Vadose Zone Hydrology: Cutting Across Disciplines, Oxford University Press, New York.Google Scholar
  39. Terwiel, R. J.: 1974, Projection operator method applied to stochastic linear differential equations, Physica 74, 248 - 265.CrossRefGoogle Scholar
  40. van Kampen, N. G.: 1974, A cumulant expansion for stochastic linear differential equations, Physica 74, 215 - 247.CrossRefGoogle Scholar
  41. van Kampen, N. G.: 1976, Stochastic differential equations, Phys. Rept. 24, 171 - 228.CrossRefGoogle Scholar
  42. Wood, B. D.: 1998, A connection between the Lagrangian stochastic-convective and cumulant expansion approaches for describing solute transport in heterogeneous porous media, Advan. Water Resour. 22, 319 - 332.CrossRefGoogle Scholar
  43. Wood, B. D. and Kavvas, M. L.: 1999, Ensemble-averaged equations for reactive transport in porous media under unsteady flow conditions, Water Resour. Res. 35, 2053 - 2068.CrossRefGoogle Scholar
  44. Zagoskin, A. M.: 1998, Quantum Theory of Many-Body Systems, Springer, New York.CrossRefGoogle Scholar
  45. Zhang, Q.:1995, The asymptotic scaling behavior of mixing induced by a random velocity field, Advan. Appl. Maths. 16, 23 - 58.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations