Advertisement

Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System

Chapter

Abstract

Highly-resolved simulations and flow and transport in an alluvial system at the Lawrence Livermore National Laboratory (LLNL) site explore the role of diffusion in the migration and recovery of a conservative solute. Heterogeneity is resolved to the hydrofacies scale with a discretization of 10.0, 5.0 and 0.5 m in the strike, dip and vertical directions of the alluvial-fan system. Transport simulations rely on recently developed random-walk techniques that accurately account for local dispersion processes at interfaces between materials with contrasting hydraulic and transport properties. Solute migration and recovery by pump and treat are shown to be highly sensitive to magnitude of effective diffusion coefficient. Further, transport appears significantly more sensitive to the diffusion coefficient than to local-scale dispersion processes represented by a dispersivity coefficient. Predicted hold back of solute mass near source locations during ambient migration and pump-and-treat remediation is consistent with observations at LLNL, and reminiscent of observations at the MADE site of Columbus Air Force Base, Mississippi. Results confirm the important role of diffusion in low-conductivity materials and, consequently, its impact on efficacy of pump-and-treat and other remedial technologies. In a typical alluvial system on a decadal time scale this process is, in part, fundamentally nonreversible because the average thickness of low-K hydrofacies is considerably greater than the mean-square length of penetration of the solute plume.

Key words

stochastic groundwater dispersion contaminant transport heterogeneity diffusion remediation. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. E. and Gelhar, L. W.: 1992, Field study of dispersion in a heterogeneous aquifer. 2. Spatial moments analysis, Water Resour Res. 28 (12), 3293 - 3307.CrossRefGoogle Scholar
  2. Anderson, M. P. and Woessner, W. W.: 1992, Applied Groundwater Modeling, Simulation of Flow and Advective Transport,Academic Press.Google Scholar
  3. Archie, G. E.: 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pct. Eng. 146, 54 - 62.Google Scholar
  4. Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R. and Adams, E. E.: 1992, Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description, Water Resour. Res. 28 (12), 3281 - 3291.CrossRefGoogle Scholar
  5. Carle, S. F.: 1996, A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture, PhD Dissertation, University of California, Davis.Google Scholar
  6. Carle, S. F. and Fogg, G. E.: 1997, Modeling spatial variability with one-and multidimensional Markov chains, Math. Geol. 28, 453 - 476.CrossRefGoogle Scholar
  7. Carle, S. F., LaBolle, E. M., Weissmann, G. S., VanBrocklin, D. and Fogg, G. E.: 1998, Geostatistical simulation of hydrofacies architecture: A transition probability/Markov approach, In: G. S. Fraser and J. M. Davis (eds), SEPM Concepts in Hydrogeology and Environmental Geology No. 1, Hydrogeologic Models of Sedimentary Aquifers, SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.Google Scholar
  8. Cvetkovic, V. D., Dagan, G. and Shapiro, A. M.: 1991, An exact solution of solute transport by one-dimensional random velocity fields, Stoch. Hydrol. Hydraulics 5, 45 - 54.CrossRefGoogle Scholar
  9. Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer-Verlag, Berlin, Heidelberg, 465 pp.CrossRefGoogle Scholar
  10. Feenstra, S., Cherry, J. A., Sudicky, E. A. and Haq, Z.: 1984, Matrix diffusion effects on contaminant migration from an injection well in fractured sandstone, Ground Water 22 (3), 307 - 316.CrossRefGoogle Scholar
  11. Fogg, G. E., Noyes, C. D. and Carle, S. F.: 1998, Geologically-based model of heterogeneous hydraulic conductivity in an alluvial setting, Hydrologeol. J. 6, 131 - 143.CrossRefGoogle Scholar
  12. Fogg, G. E., Carle, S. E and Green, C.: A connected-network paradigm for the alluvial aquifer system, In: D. Zhang (ed.), Theory, Modeling and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman’s 60th Birthday,Geological Society of America Special Publication, in press.Google Scholar
  13. Galloway, W. E. and Hobday, D. K.: 1996, Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources,2nd edn, Springer-Verlag, 491 pp.Google Scholar
  14. Gelhar, L. W. and Axness, C. L.: 1983, Theree-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19 (1), 161 - 180.CrossRefGoogle Scholar
  15. Gelhar, L. W.: 1986, Stochastic subsurface hydrology from theory to applications, Water Resour. Res. 22 (9), 135S - 1455.CrossRefGoogle Scholar
  16. Gelhar, L.W.: 1993, Stochastic Subsurface Hydrology, Prentice Hall, New Jersey.Google Scholar
  17. Gillham, R. W., Sudicky, E. A., Cherry, J. A. and Frind, E. 0.: 1984, An advection diffusion concept for solute transport in heterogeneous unconsolidated geologic deposits, Water Resour. Res. 20 (3), 369 - 378.Google Scholar
  18. Grathwohl, P.: 1998, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, Kluwer Academic Publishers, Norwell, Massachusetts.Google Scholar
  19. Haggerty R. and Gorelick, S. M.: 1995, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res. 31 (10), 2383 - 2400.Google Scholar
  20. Hoffman, F., Blake, R. G., Demir, Z., Gelinas, R. J., McKereghan, P. F. and Noyas, C. D.: 1997, A conceptual model and remediation strategy for VOCs in Low Organic Carbon Unconsolidated Sediments, Lawrence Livermore National Laboratory, UCRL-JC-125199 Rev. 1.Google Scholar
  21. Kapoor, V. and Gelhar, L. W.: 1994, Transport in three-dimensionally heterogeneous aquifers, 1, Dynamics of concentration fluctuations, Water Resour. Res. 30 (6), 1775 - 1788.CrossRefGoogle Scholar
  22. LaBolle, E. M., Fogg, G. E. and Tompson, A. F. B.: 1996, Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods, Water Resour. Res. 32 (3), 583 - 593.CrossRefGoogle Scholar
  23. LaBolle, E. M., Quastel, J. and Fogg, G. E.: 1998, Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection—dispersion equations, Water Resour. Res. 34 (7), 1685 - 1693.CrossRefGoogle Scholar
  24. LaBolle, E. M., Quastel, J., Fogg, G. E. and Gravner, J.: 1999, Diffusion processes in composite porous media: Generalized stochastic differential equations and their numerical integration by random walks, Water Resour. Res. in press.Google Scholar
  25. LaB olle: 1999, Simulation of diffusion processes in porous media, PhD Dissertation, U.C. Davis. Mackay, D. M. and Cherry, J. A.: 1989, Groundwater contaminantion: Pump-and-treat remediation, Environ. Sci. Technol. 23, 630 - 636.Google Scholar
  26. Matheron, G. and de Marsily G.: 1980, Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 901 - 917.CrossRefGoogle Scholar
  27. McDonald, M. G. and Harbaugh, A. W: 1988, A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Techniques of Water-Resources Investigations Book 6, Chapter Al, p. 586.Google Scholar
  28. Mercer, J. W., Skipp, D. C. and Giffin, D.: 1990, Basics of Pump-and-Treat Ground-Water Re-mediation Technology, EPA/600/8-90/003, Ada, Okla., EPA, R.S. Kerr Environmental Research Laboratory, p. 31.Google Scholar
  29. National Research Council (NRC): 1994, Alternative for Ground Water Cleanup, National Academy Press, Washington, D.C.Google Scholar
  30. Noyes, C. N.: 1990, Hydrostratigraphic analysis of the Pilot Remediation Test Area, LLNL, Livermore, California, MS Thesis, University of California, Davis, 165 pp.Google Scholar
  31. Nyer, E. K.: 1993, Aquifer restoration: pump and treat and the alternatives, Groundwater Monitor. Rev. Winter, pp. 89 - 92.Google Scholar
  32. OSWER: 1997, Directive 9200.4-17, use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites, U.S. EPA office of Solid Waste and Emergency Response Directive 9200.4-17, 29 pp.Google Scholar
  33. Pollock, D. W.: 1988, Semianalytical computation of path lines for finite-difference models, Ground Water 26 (6), 743 - 760.CrossRefGoogle Scholar
  34. Rügner, J., Kleineidam, S. and Grathwohl, P.: 1998, Long-term sorption kinetics of phananthrene in aquifer materials, Environ. Sci. Technol. 33 (10), 1645 - 1651.CrossRefGoogle Scholar
  35. Tompson, A. F. B. and Gelhar, L. W.: 1990, Numerical simulation of solute transport in three- dimensional, randomly heterogeneous porous media, Water Resour. Res. 26 (10), 2541 - 2562.CrossRefGoogle Scholar
  36. Tompson, A. F. B., Falgout, R. D., Smith, S. G., Bosl, W. J. and Ashby, S. F.: 1998, Analysis of subsurface contaminant migration and remediation using high performance computing, Adv. Water Resour. 22 (3), 203 - 221.CrossRefGoogle Scholar
  37. Tompson A. F. B., Carle, S. F., Rosenberg, N. D. and Maxwell, R. M.: 1999, Analysis of groundwater migration from artificial recharge in a large urban aquifer: a simulation perspective, Water Resour. Res. 35 (10), p. 2981.CrossRefGoogle Scholar
  38. Werth, C. J. and Reinhard, M.: 1999, Counter-diffusion of isotopically labeled trichloroethylene in silica gel and geosorbent micropores: column results, Eniron. Sci. Technol. 33, 730 - 736.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Hydrologic SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations