Skip to main content

Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System

  • Chapter
Dispersion in Heterogeneous Geological Formations

Abstract

Highly-resolved simulations and flow and transport in an alluvial system at the Lawrence Livermore National Laboratory (LLNL) site explore the role of diffusion in the migration and recovery of a conservative solute. Heterogeneity is resolved to the hydrofacies scale with a discretization of 10.0, 5.0 and 0.5 m in the strike, dip and vertical directions of the alluvial-fan system. Transport simulations rely on recently developed random-walk techniques that accurately account for local dispersion processes at interfaces between materials with contrasting hydraulic and transport properties. Solute migration and recovery by pump and treat are shown to be highly sensitive to magnitude of effective diffusion coefficient. Further, transport appears significantly more sensitive to the diffusion coefficient than to local-scale dispersion processes represented by a dispersivity coefficient. Predicted hold back of solute mass near source locations during ambient migration and pump-and-treat remediation is consistent with observations at LLNL, and reminiscent of observations at the MADE site of Columbus Air Force Base, Mississippi. Results confirm the important role of diffusion in low-conductivity materials and, consequently, its impact on efficacy of pump-and-treat and other remedial technologies. In a typical alluvial system on a decadal time scale this process is, in part, fundamentally nonreversible because the average thickness of low-K hydrofacies is considerably greater than the mean-square length of penetration of the solute plume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E. E. and Gelhar, L. W.: 1992, Field study of dispersion in a heterogeneous aquifer. 2. Spatial moments analysis, Water Resour Res. 28 (12), 3293 - 3307.

    Article  CAS  Google Scholar 

  • Anderson, M. P. and Woessner, W. W.: 1992, Applied Groundwater Modeling, Simulation of Flow and Advective Transport,Academic Press.

    Google Scholar 

  • Archie, G. E.: 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pct. Eng. 146, 54 - 62.

    Google Scholar 

  • Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R. and Adams, E. E.: 1992, Field study of dispersion in a heterogeneous aquifer. 1. Overview and site description, Water Resour. Res. 28 (12), 3281 - 3291.

    Article  CAS  Google Scholar 

  • Carle, S. F.: 1996, A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture, PhD Dissertation, University of California, Davis.

    Google Scholar 

  • Carle, S. F. and Fogg, G. E.: 1997, Modeling spatial variability with one-and multidimensional Markov chains, Math. Geol. 28, 453 - 476.

    Article  Google Scholar 

  • Carle, S. F., LaBolle, E. M., Weissmann, G. S., VanBrocklin, D. and Fogg, G. E.: 1998, Geostatistical simulation of hydrofacies architecture: A transition probability/Markov approach, In: G. S. Fraser and J. M. Davis (eds), SEPM Concepts in Hydrogeology and Environmental Geology No. 1, Hydrogeologic Models of Sedimentary Aquifers, SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.

    Google Scholar 

  • Cvetkovic, V. D., Dagan, G. and Shapiro, A. M.: 1991, An exact solution of solute transport by one-dimensional random velocity fields, Stoch. Hydrol. Hydraulics 5, 45 - 54.

    Article  Google Scholar 

  • Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer-Verlag, Berlin, Heidelberg, 465 pp.

    Book  Google Scholar 

  • Feenstra, S., Cherry, J. A., Sudicky, E. A. and Haq, Z.: 1984, Matrix diffusion effects on contaminant migration from an injection well in fractured sandstone, Ground Water 22 (3), 307 - 316.

    Article  CAS  Google Scholar 

  • Fogg, G. E., Noyes, C. D. and Carle, S. F.: 1998, Geologically-based model of heterogeneous hydraulic conductivity in an alluvial setting, Hydrologeol. J. 6, 131 - 143.

    Article  Google Scholar 

  • Fogg, G. E., Carle, S. E and Green, C.: A connected-network paradigm for the alluvial aquifer system, In: D. Zhang (ed.), Theory, Modeling and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman’s 60th Birthday,Geological Society of America Special Publication, in press.

    Google Scholar 

  • Galloway, W. E. and Hobday, D. K.: 1996, Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources,2nd edn, Springer-Verlag, 491 pp.

    Google Scholar 

  • Gelhar, L. W. and Axness, C. L.: 1983, Theree-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19 (1), 161 - 180.

    Article  Google Scholar 

  • Gelhar, L. W.: 1986, Stochastic subsurface hydrology from theory to applications, Water Resour. Res. 22 (9), 135S - 1455.

    Article  Google Scholar 

  • Gelhar, L.W.: 1993, Stochastic Subsurface Hydrology, Prentice Hall, New Jersey.

    Google Scholar 

  • Gillham, R. W., Sudicky, E. A., Cherry, J. A. and Frind, E. 0.: 1984, An advection diffusion concept for solute transport in heterogeneous unconsolidated geologic deposits, Water Resour. Res. 20 (3), 369 - 378.

    Google Scholar 

  • Grathwohl, P.: 1998, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, Kluwer Academic Publishers, Norwell, Massachusetts.

    Google Scholar 

  • Haggerty R. and Gorelick, S. M.: 1995, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res. 31 (10), 2383 - 2400.

    Google Scholar 

  • Hoffman, F., Blake, R. G., Demir, Z., Gelinas, R. J., McKereghan, P. F. and Noyas, C. D.: 1997, A conceptual model and remediation strategy for VOCs in Low Organic Carbon Unconsolidated Sediments, Lawrence Livermore National Laboratory, UCRL-JC-125199 Rev. 1.

    Google Scholar 

  • Kapoor, V. and Gelhar, L. W.: 1994, Transport in three-dimensionally heterogeneous aquifers, 1, Dynamics of concentration fluctuations, Water Resour. Res. 30 (6), 1775 - 1788.

    Article  CAS  Google Scholar 

  • LaBolle, E. M., Fogg, G. E. and Tompson, A. F. B.: 1996, Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods, Water Resour. Res. 32 (3), 583 - 593.

    Article  Google Scholar 

  • LaBolle, E. M., Quastel, J. and Fogg, G. E.: 1998, Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection—dispersion equations, Water Resour. Res. 34 (7), 1685 - 1693.

    Article  Google Scholar 

  • LaBolle, E. M., Quastel, J., Fogg, G. E. and Gravner, J.: 1999, Diffusion processes in composite porous media: Generalized stochastic differential equations and their numerical integration by random walks, Water Resour. Res. in press.

    Google Scholar 

  • LaB olle: 1999, Simulation of diffusion processes in porous media, PhD Dissertation, U.C. Davis. Mackay, D. M. and Cherry, J. A.: 1989, Groundwater contaminantion: Pump-and-treat remediation, Environ. Sci. Technol. 23, 630 - 636.

    Google Scholar 

  • Matheron, G. and de Marsily G.: 1980, Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 901 - 917.

    Article  Google Scholar 

  • McDonald, M. G. and Harbaugh, A. W: 1988, A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Techniques of Water-Resources Investigations Book 6, Chapter Al, p. 586.

    Google Scholar 

  • Mercer, J. W., Skipp, D. C. and Giffin, D.: 1990, Basics of Pump-and-Treat Ground-Water Re-mediation Technology, EPA/600/8-90/003, Ada, Okla., EPA, R.S. Kerr Environmental Research Laboratory, p. 31.

    Google Scholar 

  • National Research Council (NRC): 1994, Alternative for Ground Water Cleanup, National Academy Press, Washington, D.C.

    Google Scholar 

  • Noyes, C. N.: 1990, Hydrostratigraphic analysis of the Pilot Remediation Test Area, LLNL, Livermore, California, MS Thesis, University of California, Davis, 165 pp.

    Google Scholar 

  • Nyer, E. K.: 1993, Aquifer restoration: pump and treat and the alternatives, Groundwater Monitor. Rev. Winter, pp. 89 - 92.

    Google Scholar 

  • OSWER: 1997, Directive 9200.4-17, use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites, U.S. EPA office of Solid Waste and Emergency Response Directive 9200.4-17, 29 pp.

    Google Scholar 

  • Pollock, D. W.: 1988, Semianalytical computation of path lines for finite-difference models, Ground Water 26 (6), 743 - 760.

    Article  CAS  Google Scholar 

  • Rügner, J., Kleineidam, S. and Grathwohl, P.: 1998, Long-term sorption kinetics of phananthrene in aquifer materials, Environ. Sci. Technol. 33 (10), 1645 - 1651.

    Article  Google Scholar 

  • Tompson, A. F. B. and Gelhar, L. W.: 1990, Numerical simulation of solute transport in three- dimensional, randomly heterogeneous porous media, Water Resour. Res. 26 (10), 2541 - 2562.

    Article  CAS  Google Scholar 

  • Tompson, A. F. B., Falgout, R. D., Smith, S. G., Bosl, W. J. and Ashby, S. F.: 1998, Analysis of subsurface contaminant migration and remediation using high performance computing, Adv. Water Resour. 22 (3), 203 - 221.

    Article  Google Scholar 

  • Tompson A. F. B., Carle, S. F., Rosenberg, N. D. and Maxwell, R. M.: 1999, Analysis of groundwater migration from artificial recharge in a large urban aquifer: a simulation perspective, Water Resour. Res. 35 (10), p. 2981.

    Article  CAS  Google Scholar 

  • Werth, C. J. and Reinhard, M.: 1999, Counter-diffusion of isotopically labeled trichloroethylene in silica gel and geosorbent micropores: column results, Eniron. Sci. Technol. 33, 730 - 736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Labolle, E.M., Fogg, G.E. (2001). Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System. In: Berkowitz, B. (eds) Dispersion in Heterogeneous Geological Formations. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1278-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1278-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5638-2

  • Online ISBN: 978-94-017-1278-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics