Advertisement

The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media

Chapter

Abstract

A physical picture of contaminant transport in highly heterogeneous porous media is presented. In any specific formation the associated governing transport equation is valid at any time and space scale. Furthermore, the advective and dispersive contributions are inextricably combined. The ensemble average of the basic transport equation is equivalent to a continuous time random walk (CTRW). The connection between the CTRW transport equation, in a limiting case and the familiar advection-dispersion equation (ADE) is derived. The CTRW theory is applied to the results of laboratory experiments, field observations, and simulations of random fracture networks. All of these results manifest dominant non-Gaussian features in the transport, over different scales, which are accounted for quantitatively by the theory. The key parameter β controlling the entire shape of the contaminant plume evolution and breakthrough curves is advanced as a more useful characterization of the transport than the dispersion tensor, which is based on moments of the plume. The role of probabilistic approaches, such as CTRW, is appraised in the context of the interplay of spatial scales and levels of uncertainty. We then discuss a hybrid approach, which uses knowledge of non-stationary aspects of a field site on a larger spatial scale (trends) with a probabilistic treatment of unresolved structure on a smaller scale (residues).

Key words

contaminant transport heterogeneous media continuous time random walk CTRW non-Gaussian transport. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. E. and Gelhar, L. W.: 1992, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water Resour. Res. 28 (12), 3293–3308.CrossRefGoogle Scholar
  2. Berkowitz, B. and Scher, H.: 1995, On characterization of anomalous dispersion in porous and fractured media, Water Resour. Res. 31 (6), 1461–1466.CrossRefGoogle Scholar
  3. Berkowitz, B. and Scher, H.: 1997, Anomalous transport in random fracture networks, Phys. Rev. Lett. 79 (20), 4038–4041.CrossRefGoogle Scholar
  4. Berkowitz, B. and Scher, H.: 1998, Theory of anomalous chemical transport in fracture networks, Phys. Rev. E 57 (5), 5858–5869.CrossRefGoogle Scholar
  5. Berkowitz, B., Scher, H. and Silliman, S. E.: 2000, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36 (1), 149–158.CrossRefGoogle Scholar
  6. Compte, A.: 1996, Stochastic foundations of fractional dynamics, Phys. Rev. E 53 (4), 4191–4193.CrossRefGoogle Scholar
  7. Compte, A.: 1997, Continuous time random walks on moving fluids, Phys. Rev. E 55 (6), 6821–6831.CrossRefGoogle Scholar
  8. Copson, E. T.: 1965, Asymptotic Expansions, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  9. Dagan, G. and Neuman, S. P. (eds): 1997, Subsurface Flow and Transport A Stochastic Approach, Cambridge University Press, New York.Google Scholar
  10. Eggleston, J. and Rojstaczer, S.: 1998, Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resour. Res. 34 (9), 2155–2168.CrossRefGoogle Scholar
  11. Gelhar, L.W.: 1993, Stochastic Subsurface Hydrology, Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
  12. Grindrod, P. and Impey, M. D.: 1993, Channeling and Fickian dispersion in fractal simulated porous media, Water Resour. Res. 29 (12), 4077–4089.CrossRefGoogle Scholar
  13. Haggerty, R. and Gorelick, S. M.: 1998, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res. 31 (10), 2383–2400.Google Scholar
  14. Hatano, Y. and Hatano, N.: 1998, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resour. Res. 34 (5), 1027–1033.CrossRefGoogle Scholar
  15. Hilfer, R. and Anton, L.: 1995, Fractional master equations and fractal time random walks, Phys. Rev. E 551 (2), R848–R851.CrossRefGoogle Scholar
  16. Kenkre, V. M., Montroll, E. W. and Shlesinger, M. F.: 1973, Generalized master equations for continuous-time random walks, J. Stat. Phys. 9 (1), 45–50.CrossRefGoogle Scholar
  17. Klafter, J. and Silbey, R.: 1980, Derivation of continuous-time random-walk equations, Phys. Rev. Lett. 44 (2), 55–58.CrossRefGoogle Scholar
  18. Kinzelbach, W.: 1988, The random walk method in pollutant transport simulation, in: E. Custodio, A. Gurgui and J. P. Lobo Ferreria (eds), D. Reidel, Norwell, Mass., Groundwater Flow and Quality Modelling, NATO ASI Ser., Ser. C Math and Phys. Sci., Vol. 224, pp. 227–246.Google Scholar
  19. LaBolle, E. M., Quastel, J. and Fogg, G. F.: 1998, Diffusion theory for transport in porous media: Transition probability densities of diffusion processes corresponding to advection-dispersion equations, Water Resour. Res. 34 (7), 1685–1693.CrossRefGoogle Scholar
  20. Liu, H. H. and Molz, F. J.: 1997, Multifractal analyses of hydraulic conductivity distributions, Water Resour. Res. 33 (11), 2483–2488.CrossRefGoogle Scholar
  21. Matheron, G. and de Marsily, G.: 1980, Is transport in porous media always diffusive? A counter example, Water Resour. Res. 16 (5), 901–917.CrossRefGoogle Scholar
  22. McLean, F. B. and Ausman, G. A., Jr.: 1977, Simple approximate solutions to continuous-time random-walk transport, Phys. Rev. B 15 (2), 1052–1061.CrossRefGoogle Scholar
  23. Metzler, R., Glöckle, W. G. and Nonnenmacher, T. F.: 1994, Fractional model equation for anomalous diffusion, Physica A 211, 13–24.Google Scholar
  24. Metzler, R., Klafter, J. and Sokolov, I. M.: 1998, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Phys. Rev. E 58 (2), 1621–1633.CrossRefGoogle Scholar
  25. Montroll, E. W. and Scher, H.: 1973, Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries, J. Stat. Phys. 9 (2), 101–135.CrossRefGoogle Scholar
  26. Oppenheim, I., Shuler, K. E. and Weiss, G. H.: 1977, The Master Equation, MIT Press, Cambridge.Google Scholar
  27. Painter, S.: 1996, Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations, Water Resour. Res. 32 (5) 1183–1195.CrossRefGoogle Scholar
  28. Prickett, T. A., Naymik, T. G. and Lonnquist, C. G.: 1981, A random walk solute transport model for selected groundwater quality evaluations, Bull. Ill. State Water Surv. 65, Champaign.Google Scholar
  29. Scher, H. and Lax, M.: 1973, Stochastic transport in a disordered solid, I. Theory, Phys. Rev. B 7 (10), 4491–4502.CrossRefGoogle Scholar
  30. Scher, H. and Montroll, E. W.: 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12 (6), 2455–2477.CrossRefGoogle Scholar
  31. Scher, H., Shlesinger, H. F. and Bendler, J. T.: 1991, Time-scale invariance in transport and relaxation, Physics Today January, 26-34.Google Scholar
  32. Shlesinger, M. F.: 1974, Asymptotic solutions of continuous-time random walks, J. Stat. Phys. 10 (5), 421–434.CrossRefGoogle Scholar
  33. Shlesinger, M. F.: 1996, Random Processes, in Encyclopedia of Applied Physics, Vol. 16, VCH Publishers, Inc., New York.Google Scholar
  34. Shlesinger, M. F., Klafter, J. and Wong, Y. M.: 1982, Random walks with infinite spatial and temporal moments, J. Stat. Phys. 27 (3), 499–512.CrossRefGoogle Scholar
  35. Silliman, S. E. and Simpson, E. S.: 1987, Laboratory evidence of the scale effect in dispersion of solutes in porous media, Water Resour. Res. 23 (8), 1667–1673.CrossRefGoogle Scholar
  36. Silliman, S. E., Konikow, L. F. and Voss, C. I.: 1987, Laboratory investigation of longitudinal dispersion in anisotropic porous media, Water Resour. Res. 23 (11), 2145–2151.CrossRefGoogle Scholar
  37. Uffink, G. J. M.: 1985, A random walk method for the simulation of macrodispersion in a stratified aquifer, in: Relation of Groundwater Quality and Quantity, IAHS Publ. 146, Int. Assoc. of Hydro. Sci., Gentbrugge, Belgium, pp. 103–114.Google Scholar
  38. Zumofen, G., Klafter, J. and Blumen, A.: 1991, Trapping aspects in enhanced diffusion, J. Stat. Phys. 65 (5/6), 991–1013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Department of Environmental Sciences and Energy ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations