Skip to main content

DNS Study of Supersonic Mixing Layers

  • Chapter

Part of the book series: ERCOFTAC Series ((ERCO,volume 8))

Abstract

Direct numerical simulation is used to investigate three-dimensional temporal supersonic mixing layers at two convective Mach numbers 1.2 and 1.6. At Mach number of 1.2, the compressibility effects, characterized by the shear layer growth rate reduction, are more pronounced than at high subsonic convective Mach numbers. In this case, the structure of flow becomes three-dimensional, and Λ structures are clearly observed which accelerate the occurence of turbulence. For the M c = 1.2 case, the absence of symmetry leads to a strong interaction between a Λ structures. At M c = 1.6, the use of a computational box the size of one fundamental wavelength maintains the symmetry of the flow. The Λ structures, strongly inclined, are distorted by the shear layer and split into two symmetrical parts. Finally, shocklets occur in the flow for both convective Mach numbers. These viscous shocks are developed in three-dimensions and are stronger for the 1.6 case. In this paper transition mechanisms are analyzed and the existence of shocklets and their influences are studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Clemens, N. & Mungal, M. G. (1992). Two-and three-dimensional effects in the supersonic mixing layer. AIAA Journal, 30: 973 – 981.

    Google Scholar 

  • Clemens, N. & Mungal, M. G. (1995) Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech., 284: 171 – 216.

    Google Scholar 

  • Dimotakis, P. E. (1991). On the convection velocity of turbulent structures in supersonic shear layers. AIAA Paper 91–1724.

    Google Scholar 

  • Elliott, G. S. & Samimy, M. (1990). Compressibility effects in free shear layers. Phys. Fluids, A (2): 1231 – 1240.

    Google Scholar 

  • Freund, J. B., Lele, S. K. & Moin, P. (2000). Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech., 421: 229 – 267.

    Article  MathSciNet  MATH  Google Scholar 

  • Kourta, A. (1996). Acoustic-mean flow interaction and vortex shedding in solid rocket motors. Int. Journal for Numerical Methods in Fluids, 22: 449 – 465.

    Article  MATH  Google Scholar 

  • Kourta, A. (1996). Vortex shedding in segmented solid rocket motors, Journal of Propulsion and Power, 12 (2): 371 – 376.

    Google Scholar 

  • Luo, K. H. & Sandham, N. D. (1994). On the Formation of Small Scales in a Compressible Mixing Layer. Kluwer.

    Google Scholar 

  • Pantano, C. and Sarkar, S. (1999) Compressibility effects in the high-speed, reacting shear layer. Turbulence and Shear Flow Phenomena - 1, 53 – 58.

    Google Scholar 

  • Papamoschou, D. (1989). Structure of the compressible turbulent shear layer. AIAA Paper 89– 0126.

    Google Scholar 

  • Papamoschou, D. & Roshko, A. (1988). The compressible turbulent mixing layer: An experimental study. J. Fluid Mech., 197: 453 – 477.

    Google Scholar 

  • Papamoschou, D. (1995). Evidence of shocklets in a Counterflow supersonic shear layer. Phys. Fluids. 7 (2): 233 – 235.

    Article  Google Scholar 

  • Poinsot, T. J. & Lele, S. K. (1992) Boundary conditions for direct simulations of compressible viscous reacting flows. J. Comp. Physics, 101: 104 – 129.

    Google Scholar 

  • Sauvage, R. (2000). Etude des effets de compressibilité it grands nombres de Mach par simulation numérique directe dune couche cisaillée. Thèse de Doctorat, INP Toulouse.

    Google Scholar 

  • Vreman, B., Kuerten, H. & Geurts, B. (1995) Shocks in Direct Numerical Simulation of the confined three-dimensional mixing layer. Phys. Fluids, 7 (9): 2105 – 2107.

    MATH  Google Scholar 

  • Vreman, A. W. & Sandham, N. D. & Luo K. H. (1996). Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech., 320: 235 – 258.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kourta, A., Sauvage, R. (2001). DNS Study of Supersonic Mixing Layers. In: Geurts, B.J., Friedrich, R., Métais, O. (eds) Direct and Large-Eddy Simulation IV. ERCOFTAC Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1263-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1263-7_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5893-5

  • Online ISBN: 978-94-017-1263-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics