Skip to main content

A Dynamic Subgrid-Scale Model Based on the Turbulent Kinetic Energy

  • Chapter

Part of the book series: ERCOFTAC Series ((ERCO,volume 8))

Abstract

A dynamic subgrid-scale model using explicitly the turbulent kinetic energy, k, is investigated. The evolution for k is predicted by a transport equation. This subgrid-scale model is tested on LES of decaying homogeneous turbulence in a cubic geometry with periodic boundary conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Comte-Bellot, G. and Corrsin, S. (1971). Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech., 48: 273–337.

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. (1991). A dynamic subgridscale eddy viscosity model. Phys. Fluids A, 3 (7): 1760–1765.

    Article  MATH  Google Scholar 

  • Ghosal, S., Lund, T. S., Moin, P., and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech., 286: 229–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Lilly, D. K. (1992). A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A, 4 (3): 633–635.

    Article  MathSciNet  Google Scholar 

  • Meneveau, C. and O’Neil, J. (1994). Scaling laws of the dissipation rate of turbulent subgrid-sclae kinetic energy. Phys. Review E, 49: 2866–2874.

    Article  MathSciNet  Google Scholar 

  • Schmidt, H. and Schumann, U. (1989). Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200: 511.

    Article  MATH  Google Scholar 

  • Speziale, C. (1991). Analytic methods for the development of reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech., 23: 105–157.

    Article  Google Scholar 

  • Vreman, B., Geurts, B., and Kuerten, H. (1994). Realizability conditions for the tur-bulent stress tensor in large-eddy simulation. J. Fluid Mech., 200: 351–362.

    Article  Google Scholar 

  • Wong, V. C. (1992). A proposed statistical-dynamic closure method for the linear or nonlinear subgrid-scale stresses. Phys. Fluids A, 4 (5): 1080–1082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Debliquy, O., Knaepen, B., Carati, D. (2001). A Dynamic Subgrid-Scale Model Based on the Turbulent Kinetic Energy. In: Geurts, B.J., Friedrich, R., Métais, O. (eds) Direct and Large-Eddy Simulation IV. ERCOFTAC Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1263-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1263-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5893-5

  • Online ISBN: 978-94-017-1263-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics