Skip to main content

Verified calculation of the solution of algebraic Riccati equation

  • Chapter
Developments in Reliable Computing

Abstract

In this note we describe a new method to calculate verified solutions of the matrix Riccati equation (ARE) with interval coefficients. Such an equation has to be solved when we want to find the steady state solutions of matrix Riccati differential equation with constant coefficients which arises in the theory of automatic control and linear filtering.

Given the Riccati polynomial P(X) we use the Fréchet-derivative at X to derive a linear equation of type CX + XD = P. Applying Brouwer’s fixed point theorem, we find an interval matrix [X] that includes a positive definite solution of the equation P(X) = Ω.

First we want to give an outline of linear-quadratic control theory. Then we present results concerning the geometric structures of all solutions and enumerate linearly and quadratically convergent algorithms to find a solution used to construct the optimal feedback control for linear-quadratic optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G. and Meyer, G. The Cholesky method for interval data. Linear Algebra Appl., 194: 161–182, 1994.

    Article  Google Scholar 

  2. Armstrong, E. S. An extension of Bass’ algorithm for stabilizing linear continuous constant systems. IEEE Trans. Automat. Control, AC-20(4): 153–154, 1975.

    Google Scholar 

  3. Bunse—Gerstner, A., Byers, R. and Mehrmann, V. Numerical methods for algebraic Riccati equations. In S. Bittanti, editor, Lecture Notes of the Workshop on “The Riccati Equation in Control, Systems, and Signals”, (Como, Italy), pages 107–115. Pitagora Editrice, Bologna, 1989.

    Google Scholar 

  4. Freiling, G. and Jank, G. Non—symmetric matrix Riccati equations. J. Analysis Appl., 14: 259284, 1995.

    Google Scholar 

  5. Jansson, C. Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in right hand side. Computing, 46: 265–274, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. Knüppel, O. ProfiUBIAS — A fast interval library. Computing, 53: 277–287, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kratz, W. and Stickel, E. Numerical solution of matrix polynomial equations by Newton’s method. IMA J. blunter. Anal., 7: 355–369, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  8. Luther, W. and Otten, W. The complex arithmetic geometric mean and multiple—precision matrix functions. In Alefeld, G., Frommer, A, and Lang, B., editor, Scientific Computing and Validated Numerics, Proceedings of SCAN-95, pages 52–58. Akademie Verlag, Berlin, 1996.

    Google Scholar 

  9. Mehrmann, V. and Tan, E. Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans. Automat. Control, AC-33(7): 695–698, 1988.

    Google Scholar 

  10. Potter, J. E. Matrix quadratic solutions. J. SIAM Appi. Math., 14: 496–501, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  11. Rump, S. M. Improved iteration schemes for the validation algorithms for dense and sparse nonlinear systems. Computing, 57: 77–84, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. Shayman, M. A. Geometry of the algebraic Riccati equation, part I and part II. SIAM J. Control and Optimization, 21: 375–394, 395–409, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sima, V. Algorithms for linear—quadratic optimization. Marcel Dekker, New York, 1996.

    MATH  Google Scholar 

  14. Willems, J. C. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control, AC-16: 621–634, 1971.

    Google Scholar 

  15. Zurmühl, R. and Falk, S. Matrizen and ihre Anwendungen. Springer, Berlin, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Luther, W., Otten, W. (1999). Verified calculation of the solution of algebraic Riccati equation. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1247-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5350-3

  • Online ISBN: 978-94-017-1247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics