Skip to main content

Polyhydroxyalkanoates: Properties and Modification for High Volume Applications

  • Chapter
Degradable Polymers

Abstract

Polyhydroxy alkanoates (PHAs) comprise a group of biodegradable polyesters produced by bacteria. Their primary function is energy storage and they are used as an energy reserve for bacteria, similar to the role of polysaccharides or polyphosphates in living cells. PHAs can be produced by relative simple and efficient procedure based completely on biotechnology utilizing fully renewable resources (see Chapter 8). Variations in this procedure, mainly consisting in changes in the composition of the food supplied to the bacteria, lead to a production of modified PHAs as homo or copolymers, containing different functional groups. The original or modified PHAs seem to be ideal for applications in various short-term plastic products, especially packaging. In spite of their attractive potential, the applications of PHAs are at present marginal, because they possess several serious drawbacks that prevent high volume production and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilingham N.C., Henman T.J., Holmes P.A. (1987) Development in Polymer Degradation 7, chapter 3, Ed. N. Grassie, Elsevier Sci. Publishers

    Google Scholar 

  2. Hocking P.J., Marchessault R.H., Biopolyesters, in: Chemistry and Technology of Biodegradable Polymers, Blackie Academic & Professional, Ed. G.J.L. Griffin, London, Glasgow, NY, Tokio, Melbourne, Madras 1994

    Google Scholar 

  3. Sudesh K., Abe H., Doi Y. (2000) Progr. Polymer Sci. 25, 1503 —1555

    Google Scholar 

  4. Braunegg G., Lefebvre G., Genser K.F. (1998) J. Biotechnology 65, 127 —161

    Google Scholar 

  5. Hammond T., Liggat J.J. (1995) Degradable Polymers: Principles and Applications, Eds. G.Scott and D.Gilead, Chapman & Hall (Kluwa ), Chapter 5

    Google Scholar 

  6. Hobbs J.K (1998) J. Mater. Sci. 33, 2509 — 2514

    Google Scholar 

  7. Janigovâ I., Lacík I., Chodâk I. Polymer Degrad. Stability 77, 35 — 41 (2002)

    Google Scholar 

  8. Taylor R. In: Chemistry of Functional Groups, Chap. 15, Ed. S. Patai, Appl. Sci. Publishers, London 1979.

    Google Scholar 

  9. Grassie N., Murray E.J., Holmes PA. (1984) Polymer. Degrad. Stability. 6, 95.

    Article  CAS  Google Scholar 

  10. Grassie N., Murray E.J., Holmes P.A. (1984) Polymer Degrad. Stability 6, 47

    Article  CAS  Google Scholar 

  11. Day M., Cooney J.D., Shaw K., Watts J. (1998) J. Thermal Analysis 52 261 — 274

    Google Scholar 

  12. He J.-D., Cheung M.K., Yu P.H., Chen G.-Q. (2001) J. Appl. Polymer Sci. 82 90 —98

    Google Scholar 

  13. Li S.-D., Yu P.H., Cheung M.K. (2001) J.Appl. Polymer Sci. 80, 2237 — 2244

    Google Scholar 

  14. Csomorova K, Rychly J, Bakos D, Janigova I. (1994) Polym. Degrad. Stability. 43 441–446

    Article  CAS  Google Scholar 

  15. Kopinke F.D, Rennnler M, Mackenzie K. (1996) Polymer. Degrad. Stability 52 25–38

    Article  CAS  Google Scholar 

  16. Hoffmann A, Kreuzberger S, Hinrichsen G. (1994) Polymer Bull.,33 355 — 362.

    Google Scholar 

  17. Rychly J., Csomorova K., Janigova I. Broska R., Bakos D., (1995) Iranian J. Polymer Sci. Technol. 4 274 — 282

    Google Scholar 

  18. Weber E.J., Heusinger H. (1965) Radiochimica Acta 4, 92

    CAS  Google Scholar 

  19. Albertsson A.-C., Karlsson S. (1995) Acta Polymerica 46 114 — 123

    Google Scholar 

  20. Tsuji H. (2000) Recent Res. Devel. Polymer Sci. 4 13 — 37

    Google Scholar 

  21. Tormala P., Rokkanen P., Vainiopaa S., Laiho J., Hepponen V.-P., Pohjonen T., (1990) US Pat. Applic. 4,968,317

    Google Scholar 

  22. Wang Y.D., Yamamoto T., Cakmak M. (1996) J. Appl. Polymer Sci. 61, 1957

    Article  CAS  Google Scholar 

  23. de Koning G.,J.,M., Scheeren A.H.C., Lemstra P.J., Peeters M., Reynaers H. (1994) Polymer 35 4598 — 4605

    Google Scholar 

  24. Chambers R., Daly J.H., Hayward D., Liggat J.J. (2001) J. Mater. Sci. 36 3785 —3792

    Google Scholar 

  25. Karpâtyovâ A., Chodâk I., unpublished results

    Google Scholar 

  26. Doi Y., Kunioka M., Nakamura Y., Soga K (1987) Macromolecules 20 2988 —2991

    Google Scholar 

  27. Byrom D. (1987) Trends Biotechnol. 5 246–250

    Google Scholar 

  28. Organ S.J., Barham P J (1991).1. Mater. Sci. 26 1368

    Google Scholar 

  29. Gagnon K.D., Lenz R.W., Farris R.J. (1992) Rubber Chem. Technol. 65 761 — 777

    Google Scholar 

  30. Chodak I., Nogellova Z., Alexy P., Proc. Int. Workshop Environmentally Degradable Polymers,Doha, March 1999, 66 — 72.

    Google Scholar 

  31. Yasin M., Amass A.J., Tighe B.J. (1995) Adv. Mater. - 95, Proc. Int. Symp. 4th Meeting Date 1995, 331–336.

    Google Scholar 

  32. Barham P.I., Keller A, J. (1986) Polymer Sci., Polym. Phys. Ed. 24, 69

    Google Scholar 

  33. Luepke T., Radusch H.J., Metzner K. (1998) Macromol. Symp. 127 227 — 240

    Google Scholar 

  34. de Koning G.J.M., Lemstra P.J., (1993) Polymer 34, 4089

    Article  CAS  Google Scholar 

  35. Hobbs J.K., Barham P.J. (1998) J. Mater. Sci. 33, 2515 — 2518

    Google Scholar 

  36. Yuan Y., Ruckenstein E., (1998) Polymer 39, 1893 — 1897

    Google Scholar 

  37. Mitomo H., Sasaoka T., Yoshii F., Makuuchi K., Saito T. (1996) Sen’i Gakkaishi 52 623 — 626 (English)

    Google Scholar 

  38. Bahari M., Mitomo H., Enjoji T., Hasegawa S., Yoshii F., Makuuchi K. (1997) Angew. Makromol. Chem. 250 31 — 44

    Google Scholar 

  39. Luo S., Netravali A.N. (1999).1. Appl. Polymer Sci. 73, 1059–1067

    Google Scholar 

  40. Hazer B., Demirel S.I., Borcaldi M., Eroglu M.S., Cakmak M., Erman B (2001) Polymer Bull. 46 389 — 394

    Google Scholar 

  41. Deng X.M., Hao J.Y. (2001) Eur. Polymer J. 37, 211— 214

    Google Scholar 

  42. Hiki S., Miyamoto M., Kimura Y. (2000) Polymer 41 7369 — 7379

    Google Scholar 

  43. Yoshie N., Azuma Y., Sakurai M., Inoue Y (1995) J. Appl. Polymer Sci. 56 17 —24

    Google Scholar 

  44. Yoon J.-S., Oh S.-H., Kim M.-N. (1998) Polymer 39, 2479 — 2487

    Google Scholar 

  45. Zhang L. Deng X. (1994) Gaofenzi Cailiao Kexue Yu Gongcheng 10 64 — 68 (Chinese)

    Google Scholar 

  46. Eur. Patent Appl.93302847.4 (13.04.93, Mitsubishi Gas Chemical Co)

    Google Scholar 

  47. Urakami T, Imagawa S., Harada M., Iwamoto A., Tokiwa Y. (2000) Kobunshi Ronbunshu 57 263 — 270

    Google Scholar 

  48. Immirzi B, Malinconico M, Orsello G., Portofino S., Volpe M.G. (1999) J. Mater. Sci. 34 1625 —1639

    Google Scholar 

  49. Chodak I., (2001) Proc. Int. Workshop Environmentally Degradable Polymers, Lodz — Pabianice, June 2001

    Google Scholar 

  50. Chun Y.S., Kim W.N. (2000) Polymer 41, 2305 — 2308

    Google Scholar 

  51. Zhang Q., Zhang Y., Wang F., Liu L., Wang C. (1998) J. Mater. Sci. Technol. 14 95 — 96

    Google Scholar 

  52. Hao J., Deng X., (2001) Polymer 42 4091 — 4097

    Google Scholar 

  53. Finelli L., Sarti B., Scandola M. (1997) J. Macromol. Sci., Pure Appl. Chem. A34, 13–33

    Article  Google Scholar 

  54. Lee J.-C., Nakajima K., Ikehara T., Nishi T. (1997) J. Polymer Sci., Part B: Polym. Phys 35, 2645 — 2652

    Google Scholar 

  55. El-Shafee E., Saad G.R., Fahmy S.M. (2001) Eur. Polymer J., 37, 2091— 2104

    Google Scholar 

  56. Deng X.M., Zhang L.L., Xiong C.D. (1993) Chinese Chem. Letters 4 265 — 268 (in English)

    Google Scholar 

  57. H.J., Park S.H., Yoon J.S., Lee H.-S., Choi S.J. (1995) Polymer Engn. Sci. 35 1636 —1642

    Google Scholar 

  58. He Y., Asakawa N., Inoue Y. (2000) Polymer Int. 49 609 — 617

    Google Scholar 

  59. Avella M., Martuscelli E., Orsello G., Raimo M. (1997) Pascucci B., Polymer 38, 6135 — 6143

    Google Scholar 

  60. lannace S., Ambrosio L., Huang S.J., Nicolais L. (1994) J. Appl. Polymer Sci. 54, 1525 — 1536

    Google Scholar 

  61. Deng X., Hao J., Yuan M., Xiong C., Zhao S., (2001) Polymer Int. 50 37 — 44

    Google Scholar 

  62. He Y., Asakawa N., Masuda T., Cao A., Yoshie N., Inoue Y. (2000) Eur. Polymer J. 36, 2221— 2229

    Google Scholar 

  63. Chen W., David D.J., MacKnight W.J., Karasz F.E. (2001) Polymer 42 8407 —8414

    Google Scholar 

  64. Yoshie N., Fujiwara M., Ohmori M., Inoue Y. (2001) Polymer 42 8557 — 8561

    Google Scholar 

  65. Saito M., Inoue Y., Yoshie N. (2001) Polymer 42 5573 — 5580

    Google Scholar 

  66. Na Y.-H., Arai Y., Asakawa N., Yoshie N., Inoue Y. (2001) Macromolecules 34 4834 — 4841

    Google Scholar 

  67. Zhang L., Goh S.H., Lee S.Y. (1999) J. Appl. Polymer Sci. 74 383 — 388

    Google Scholar 

  68. Choe S., Cha Y.-J., Lee H.-S., Yoon J.S., Choi H.J. (1995) Polymer 26 4977 — 4982

    Google Scholar 

  69. He Y., Shuai X., Cao A., Kasuya K., Doi Y., Inoue Y. (2001) Polymer Degrad. Stability 73, 193–199

    Article  CAS  Google Scholar 

  70. Imam S H, Chen L., Gordon S.H., Shogren R.L., Weisleder D., Greene R.V., (1998) J. Environ. Polymer Degrad. 6 91 — 98

    Google Scholar 

  71. Koller I., Owen A.J. (1996) Polymer Int. 39 175-181

    Google Scholar 

  72. Reinsch V.E., Kelley S.S. (1997) J. Appl. Polymer Sci. 64, 1785 — 1796

    Google Scholar 

  73. Maekawa M., Terahata Y., Manley R.S.J. (1997) Nippon Kasei Gakkaishi 48 981 —987

    Google Scholar 

  74. Avella M., La Rota G., Martuscelli E., Raimo M. Sadocco P., Elegir G., Riva R., (2000) J. Mater. Sci. 35 829 — 836

    Google Scholar 

  75. Bastiolli C. (1998) Macromol. Symp. 135 193 — 204

    Google Scholar 

  76. Hrabak O., (1992) FEMS Microbial Rev.,251 — 256

    Google Scholar 

  77. Ikada Y., Tsuji H. (2000)Macromol Rapid. Commun. 21 117 — 132

    Google Scholar 

  78. Ackermann J -U, Babel W. (1998) Polymer Degrad. Stability 59 183 — 186

    Google Scholar 

  79. Ramsay J.A., Ramsay B.A. (1990) Applied Phycology Forum 7 1— 5

    Google Scholar 

  80. McCarthy-Bates L. Plastic World March,22 — 27 (1993)

    Google Scholar 

  81. Basta N., (1984) High Technology,February 1984,. 67 — 71

    Google Scholar 

  82. Miguel O., Fernandez-Berridi M.J., Iruin J.J (1997) J. Appl. Polymer Sci. 64 1849 —1859

    Google Scholar 

  83. Marchessault R.H., Lepoutre P., Wrist P. (1991) PCT International Application WO 31 13 207

    Google Scholar 

  84. Marchessault R.H., Rioux P., Saracovan I. (1993) Nordic Pulp and Paper Research J. 211 — 216

    Google Scholar 

  85. ICI, Biopol, the unique biodegradable thermoplastic from ICI, promotional material

    Google Scholar 

  86. Trau M., Truss R.W (1988) European Patent Application EP 293 172

    Google Scholar 

  87. Holmes P.A. (1985) British UK Patent Application GB 2 160 208

    Google Scholar 

  88. Kamata T., Numazawa R., Kamo J. (1983) Jpn. Kokai Tokyo Koho Jp, 137 402

    Google Scholar 

  89. Iordanskii A.L., Kamaev P.P., Hanggi U.J (2000) J. Appl. Polymer Sci. 76 475 —480

    Google Scholar 

  90. Krivandin A.V., Shatalova O.V., Iordanskii A.L (1997) Polymer Sci. Ser. B,37 102— 105

    Google Scholar 

  91. Doi Y., Iwata T., Kusaka S., (1998) Eur. Patent Appl. EP 849311 A2, 24

    Google Scholar 

  92. Kusaka S., Iwata T., Doi Y., (1998) J. Macromol. Sci., Pure Appl. Chem. A35 319— 335

    Google Scholar 

  93. Yamane H., Terao K., Hiki S., Kimura Y. (2001) Polymer 42 3241 — 3248

    Google Scholar 

  94. Gordeyev S.A., Nekrasov Y.P. (1999) J. Mater. Sci. Lett. 18, 1691–1692

    Article  CAS  Google Scholar 

  95. Gordeyev S.A., Nekrasov Yu.P., Shilton S.J. (2001) J. Appl. Polymer Sci. 81, 2260–2264

    Article  CAS  Google Scholar 

  96. Cesaro A., Fabri D., Sussich F., Paradossi G. (1999) Macromol. Symp. 138 165 —174

    Google Scholar 

  97. Fabri D., Guan J., Cesaro A. (1998) Thermochimica Acta 321 3 — 16

    Google Scholar 

  98. Yamane H., Terao K., Hiki S., Kawahara Y., Kimura Y., Saito T. (2001) Polymer 42 7873 — 7878

    Google Scholar 

  99. Kostic M., Skundric P., Divjakovic V., Zlatanic A., Medovic A. (1998) Hem. vlakna 38, 12 — 15 (Serbian)

    Google Scholar 

  100. Scott G. (1999) Polymers and the Environment,Royal Society of Chemistry, Chapter 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chodak, I. (2002). Polyhydroxyalkanoates: Properties and Modification for High Volume Applications. In: Scott, G. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1217-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1217-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6091-4

  • Online ISBN: 978-94-017-1217-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics