Skip to main content

Zygotic Embryogenesis: Developmental Genetics

The Formation of an Embryo from a Fertilized Egg

  • Chapter
Current Trends in the Embryology of Angiosperms

Abstract

During embryogenesis the cells of the proliferating embryo acquire specific cell fates in an integrated manner to form the seedling. The basic plant body is established in an early phase after fertilization. Subsequently, the embryo undergoes characteristic shape changes brought about by different orientations of cell-division planes and by directional cell expansions in the absence of cell migration (Lyndon, 1990). During the first one-third of embryogenesis the apical-basal and radial axes of the embryo are established. The bilateral symmetry of the embryo becomes fully apparent by the end of this first phase. This phase is followed by a period when tissue primordia grow and cells differentiate. During this period the meristematic zones corresponding to shoot and root become active. In the final phase the mature embryo undergoes changes such as desiccation in preparation for dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H.G. and Scott, R.J. (2000) Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation, Development 127, 2493–2502.

    PubMed  CAS  Google Scholar 

  • Aida, M., Ishida, T. and Tasaka, M. (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: Interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes, Development 126, 1563–1570.

    PubMed  CAS  Google Scholar 

  • Backs-Hilsemann, D. and Reinert, J. (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota, Protoplasma 70, 49–60.

    Article  Google Scholar 

  • Barton, M.K. and Poethig, R.S. (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: An analysis of development in the wild type and in the shoot meristemless mutant, Development 119, 823–831.

    Google Scholar 

  • Berleth, T. and Jürgens, G. (1993) The role of the Monopteros gene in organising the basal body region of the Arabidopsis embryo, Development 118, 575–587.

    Google Scholar 

  • Berleth, T., Hardtke, C.S., Przemeck, G.K.H. and Milner, J. (1996) Mutational analysis of root initiation in the Arabidopsis embryo, Plant Soil 187, 1–9.

    Article  CAS  Google Scholar 

  • Bewley, J.D. (1997) Seed germination and dormancy, Plant Cell 9, 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W.V. (1960) The morpholo of the grass embryo, Phytomorphology 10, 215–223.

    Google Scholar 

  • Bruck, D.K. and Walker, D.B. (1985) Cell determination during embryogenesis in Citrus jambhiri. I. Ontogeny of the epidermis, Bot. Gaz. 146, 188–195.

    Article  Google Scholar 

  • Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S. and Peacock, W.J. (1997) Fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 94, 4223–4228.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Cheng, J.C., Castle, L. and Sung, Z.R. (1997) EMF genes regulate Arabidopsis inflorescence development, Plant Cell 9, 2011–2024.

    PubMed  CAS  Google Scholar 

  • Cheng, J.-C., Seeley, K.A. and Sung, Z.R. (1995) RMLI and RML2, Arabidopsis genes required for cell proliferation at the root tip, Plant Physiol. 107, 365–376.

    CAS  Google Scholar 

  • Christianson, M.L. (1986) Fate map of the organizing shoot apex in Gossypium, Amer. J. Bot. 73, 947–958.

    Article  Google Scholar 

  • Clark, S.E., Jacobsen, S.E., Levin, J.Z. and Meyerowitz, E.M. (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis, Development 122, 1567–1575.

    PubMed  CAS  Google Scholar 

  • Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997) The CLAVATAI gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis, Cell 89, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P.J. (1995) Plant Hormones, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Davis, E.L. and Steeves, T.A. (1977) Experimental studies on the shoot apex of Helianthus annuus: The effect of surgical bisection on quiescent cells in the apex, Can. J. Bot. 55, 606–614.

    Article  Google Scholar 

  • Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A. and Benfey, P.N. (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root, Cell 86, 423–433.

    Article  PubMed  Google Scholar 

  • Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and Scheres, B. (1993) Cellular organisation of the Arabidopsis thaliana root, Development 119, 71–84.

    PubMed  CAS  Google Scholar 

  • Dolan, L., Duckett, C.M., Grierson, C., Linstead, P., Schneider, K., Lawson, E., Dean, C., Poethig, S. and Roberts, K. (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis, Development 120, 2465–2474.

    CAS  Google Scholar 

  • Duckett, C.M., Oparka, K.J., Prior, D.A.M., Dolan, L. and Roberts, K. (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development, Development 120, 3247–3255.

    CAS  Google Scholar 

  • Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P. and Smyth, D.R. (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth, Plant Cell 8, 155–168.

    CAS  Google Scholar 

  • Endrizzi, K., Moussian, B., Haecker, A., Levin, J. and Laux, T. (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE, Plant 1 10, 967–979.

    CAS  Google Scholar 

  • Esau, K. (1977) Anatomy of Seed Plants, John Wiley and Sons, New York.

    Google Scholar 

  • Faure, J.D., Vittorioso, P., Santoni, V., Fraisier, V., Prinsen, E., Barlier, I., Van Onckelen, H., Caboche, M. and Bellini, C. (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation, Development 5, 909–918.

    Google Scholar 

  • Fletcher, J.C., Brand, U., Running, M.P., Simon, R. and Meyerowitz, E.M. (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems, Science 283, 19111914.

    Google Scholar 

  • Gerlach-Cruse, D. (1969) Embryo-und Endospermentwicklung nach einer Röntgenbestrahlung der Fruchtknoten von Arabidopsis thaliana, Rad. Bot. 9, 433–442.

    Article  Google Scholar 

  • Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M.A. and Gagliano, W.B. (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis, Science 280, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Hamann, T., Mayer, U. and Jiirgens, G. (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo, Development 126, 1387–1395.

    PubMed  CAS  Google Scholar 

  • Hadfi, K., Speth, V. and Neuhaus, G. (1998) Auxin-induced devlopmental patterns in Brassica juncea embryos, Development 125, 879–887.

    PubMed  CAS  Google Scholar 

  • Hardtke, C.S. and Berleth, T. (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, EMBO 17, 1405–1411.

    Article  CAS  Google Scholar 

  • Hong, S.K., Kitano, H., Satoh, H. and Nagato, Y. (1996) How is embryo size genetically regulated in rice? Development 122, 2051–2058.

    PubMed  CAS  Google Scholar 

  • Hobbie, L., McGovern, M. Hurwitz, L.R., Pierro, A., Liu, N.Y., Bandyopadhyay, A. and Estelle, M. (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development, Development 127, 23–32.

    CAS  Google Scholar 

  • Irish, V.F. (1991) Cell lineage in plant development, Curr. Opin. GeneL Dev. 1, 169–173.

    Article  CAS  Google Scholar 

  • Ito, Y., Eiguchi, M. and Kurata, N. (1999) Expression of novel homeobox genes in early embryogenesis in rice, Biochim. Biophys. Acta 1444, 445–450.

    Google Scholar 

  • Jacobs, C. and Shapiro, L. (1998) Microbial asymmetric cell division: Localization of cell fate determinants, Curr. Opin. Genet Dev. 4: 386–391.

    Article  Google Scholar 

  • Jang, J.-C., Fujioka, S., Tasaka, M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S. and Sheen, J. (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana, Genes Dev. 14, 1485–1497.

    PubMed  CAS  Google Scholar 

  • Jeong, S., Trotochaud, A.E. and Clark, S.E. (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase, Plant Cell 11, 1925–1934.

    PubMed  CAS  Google Scholar 

  • Jiirgens, G. and Mayer, U. (1994) Arabidopsis, in J. Bard (ed.), A Colour Atlas of Developing Embryos, Wolfe Publishing, London, pp. 7–21.

    Google Scholar 

  • Kaplan, D. (1969) Seed development in Downingia, Phytomorphology 19, 253–278. Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G. and Hake, S. (1997) Loss-of-

    Google Scholar 

  • function mutations in the maize homeobox gene, knotted],are defective in shoot meristem maintenance, Development 124 3045–3054.

    Google Scholar 

  • Kinoshita, T., Yadegari, R., Harada, J.J., Goldberg, R.B. and Fischer, R.L. (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm, Plant Cell 11, 1945–1952.

    PubMed  CAS  Google Scholar 

  • Kiyosue, T., Ohad, N., Yadegari, R., Hannon, M., Dinneny, J., Wells, D., Katz, A., Margossian, L., Harada, J.J., Goldberg, R.B. and Fischer, R.L. (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis, Proc. NatL Acad. Sci. USA 96, 4186–4191.

    Google Scholar 

  • Koornneef, M. (1981) The complex syndrome of ttg mutants, Arabidopsis Inf Serv. 18, 45–51. Koornneef, M. (1990) Mutations affecting the testa colour in Arabidopsis, Arabidopsis Inf Serv. 27, 1–4.

    Google Scholar 

  • Koornneef, M. and Karssen, C.M. (1994) Seed dormancy and germination, in E.M. Meyerowitz and C.R. Somerville (eds), Arabidopsis, Cold Spring Harbor Laboratory Press, New York, pp. 313–334.

    Google Scholar 

  • Kreuger, M. and van Holst, G.-J. (1996) Arabinogalactan proteins and plant differentiation, Plant MoL Biot 30, 1077–1086.

    Article  CAS  Google Scholar 

  • Lauber, M.H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., Lukowitz, W. and Jiirgens, G. (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin, 1 Cell BioL 139, 1485–1493.

    CAS  Google Scholar 

  • Laux, T., Mayer, K.F.X., Berger, J. and Jiirgens, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development 122, 87–96.

    PubMed  CAS  Google Scholar 

  • Lindsay, K., Topping, J.F., Muskett, P.R., Wei, W. and Horne, K.L. (1998) Dissecting embryonic and seedling morphogenesis in Arabidopsis by promoter trap insertional mutagenesis, Symp. Soc. Exp. Biol. 51, 1–10.

    Google Scholar 

  • Liu, C.-m., Xu, Z.-h. and Chua, N.-H. (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis, Plant Cell 5, 621630.

    Google Scholar 

  • Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis, Development 125, 3027–3035.

    PubMed  CAS  Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379, 6669.

    Article  Google Scholar 

  • Lopes, M.A. and Larkins, B.A. (1993) Endosperm origin, development, and function, Plant Cells, 1383–1399.

    Google Scholar 

  • Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1998) Arabidopsis LEAFY COTYLEDONI is sufficient to induce embryo development in vegetative cells, Cell 93, 1195–1205.

    CAS  Google Scholar 

  • Lu, P., Porat, R., Nadeau, J.A. and O’Neill, S.D. (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes, Plant Cell 8, 2155–2168.

    PubMed  CAS  Google Scholar 

  • Lucas, W.J., Bouché-Pi11on, S., Jackson, D.P., Nguyen, L., Baker, L., Ding, B. and Hake, S. (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata, Science 270, 1980–1983.

    Article  PubMed  CAS  Google Scholar 

  • Luerssen, H., Kirik, V., Herrmann, P. and Misera, S. (1998) FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana, Plant J. 5, 755–764.

    Article  Google Scholar 

  • Lukowitz, W., Mayer, U. and Jürgens, G. (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product, Cell 84, 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S., Peacock, W.J. and Chaudhury, A.M. (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 96, 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Lyndon, R.F. (1990) Plant Development: The Cellular Basis, Unwin Hyman Inc., Winchester.

    Google Scholar 

  • Lynn, K, Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P. and Barton, M.K. (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTEI gene, Development 126, 469–481.

    PubMed  CAS  Google Scholar 

  • Malamy, J.E. and Benfey, P.N. (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana, Development 124, 33–44.

    PubMed  CAS  Google Scholar 

  • Mansfield, S.G. and Briarty, L.G. (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo, Can. J. Bot. 69, 461–476.

    Article  Google Scholar 

  • Mansfield, S.G., Briarty, L.G. and Erni, S. (1991). Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac, Can. J. Bot. 69, 447–460.

    Article  Google Scholar 

  • Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G. and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell 95, 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, U., Torres-Ruiz, R.A., Berleth, T., Miséra, S. and Jürgens, G. (1991) Mutations affecting body organization in the Arabidopsis embryo, Nature 353, 402–407.

    Article  Google Scholar 

  • Mayer, U., Büttner, G. and Jürgens, G. (1993) Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene, Development 117, 149–162.

    Google Scholar 

  • McLean, B.G., Hempel, F.D. and Zambryski, P.C. (1997) Plant intercellular communication via plasmodesmata, Plant Cell 9, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W. (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons, Science 258, 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W., Franzmann, L.H., Nickle, T.C. and Yeung, E.C. (1994) leafy cotyledon mutants of Arabidopsis, Plant Cell 6, 1049–1064.

    Google Scholar 

  • Mizukami, Y. and Fischer, R.L. (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis, Proc. NatL Acad. Sc1 USA 97, 942–947.

    Article  CAS  Google Scholar 

  • M61, R., Matthys-Rochon, E. and Dumas, C. (1994) The kinetics of cytological events during double fertilization in Zea mays L., Plant 5, 197–206.

    Article  Google Scholar 

  • Moussian, B., Schoof, H., Haecker, A., Jtirgens, G. and Laux, T. (1998). Role of the ZWILLE gene in the regulation of the central shoot meristem fate during Arabidopsis embryogenesis, EMBO J 17, 1799–1809.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K. and Komamine, A. (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture, Plant PhysioL 79, 988–991.

    Article  PubMed  CAS  Google Scholar 

  • Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B. and Fischer, R.L. (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization, Plant Cell 11, 407–416.

    PubMed  CAS  Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, Plant Cell 3, 677–684.

    PubMed  CAS  Google Scholar 

  • Papi, M., Sabatini, S., Bouchez, D., Camilleri, C., Costantino, P. and Vittorioso, P. (2000) Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination, Genes Dev. 14, 28–33.

    PubMed  CAS  Google Scholar 

  • Pennell, R.I., Cronk, Q.C.B., Forsberg, L.S., Stöhr, C., Snogerup, S., Kjellbom, P. and McCabe, P.F. (1995) Cell-context signalling, PhiL Trans. Royal Soc. London SER. B 350, 87–93.

    Article  CAS  Google Scholar 

  • Perbal, M.C., Haughn, G., Saedler, H. and Schwarz-Sommer, Z. (1996). Non-cell-autonomous fimetion of the Antirrhinum homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking, Development 122, 3433–3441.

    PubMed  CAS  Google Scholar 

  • Perrimon, N., Lanjuin, A., Arnold, C. and Noll, E. (1996) Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations, Genetics 144, 1681–1692.

    PubMed  CAS  Google Scholar 

  • Poethig, R.S., Coe, E.H. and Johri, M.M. (1986) Cell lineage patterns in maize embryogenesis: A clonal analysis, Dev. BioL 117, 392–404.

    Article  Google Scholar 

  • Postma-Haarsma, A.D., Verwoert, LI., Stronk, 0.P., Koster, J., Lamers, G.E., Hoge, J.H. and Meijer, A.H. (1999) Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis, Plant MoL Biol. 39, 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Przemeck, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R. and Berleth, T. (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization, Planta 200, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Ray, S., Golden, T. and Ray, A. (1996a) Maternal effects of the short integument mutation on embryo development in Arabidopsis, Dev. Biol. 180, 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Ray, A., Lang, J.D., Golden, T. and Ray, S. (1996b) SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time, Development 122, 2631–2638.

    CAS  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root, Cell 99, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Santoni, V., Delarue, M., Caboche, M. and Bellini, C. (1997) A comparison of two-dimensional electrophoresis data with phenotypical traits in Arabidopsis leads to the identification of a mutant (cri1) that accumulates cytokinins, Planta 202, 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Hong, S.K., Tagiri, A., Kitano, H., Yamamoto, N., Nagato, Y. and Matsuoka, M. (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis, Proc. NatL Acad. Sci. USA 93, 8117–8122.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, N., Hong, S.-K., Nishimura, A., Matsuoka, M., Kitano, H. and Nagato, Y. (1999) Initiation of shoot apical meristem in rice: Characterization of four SHOOTLESS genes, Development 126, 3629–3636.

    Google Scholar 

  • Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C. and Weisbeek, P. (1994). Embryonic origin of the Arabidopsis primary root and root meristem initials, Development 120, 2475–2487.

    Google Scholar 

  • Scheres, B., Di Laurenzio, L., Willemsen, V., Hauser, M., Janmaat, K., Weisbeek, P. and Benfey, P.N. (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis, Development 121, 53–62.

    CAS  Google Scholar 

  • Scheres, B., McKhann, H.I. and van den Berg, C. (1996a) Roots redefined: Anatomical and genetical analysis of root development, Plant Physiol. 111, 959–964.

    PubMed  CAS  Google Scholar 

  • Scheres, B., McKhann, H., van den Berg, C., Willemsen, V., Wolkenfelt, H., de Vrieze, G. and Weisbeck, P. (1996b) Experimental and genetic analyses of root development in Arabidopsis thaliana, Plant Soil 187, 11–19.

    Article  Google Scholar 

  • Schiavone, F.M. and Racusen, R.H. (1991) Regeneration of surgically transected carrot embryos occurs by position-dependent, proximodistal replacement of missing tissues, Development 113, 1305–1313.

    PubMed  CAS  Google Scholar 

  • Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J. and de Vries, S.C. (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos, Development 124, 2049–2062.

    PubMed  CAS  Google Scholar 

  • Schwartz, B.W., Yeung, E.C. and Meinke, D.W. (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis, Development 120, 3235–3245.

    CAS  Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G. and Laux, T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell 100, 635–644.

    Article  PubMed  CAS  Google Scholar 

  • Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl., J., Schmidt, J. and Jürgens, G. (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis, Genes Dev. 14, 1471–1484.

    CAS  Google Scholar 

  • Shevell, D.E., Leu, W.M., Gillmor, C.S., Xia, G., Feldmann, K.A. and Chua, N.H. (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7, Cell 77, 1051–1062.

    CAS  Google Scholar 

  • Sinha, N.R., Williams, R.E. and Hake, S. (1993) Overexpression of the maize homeobox gene, KNOTTED-I, causes a switch from determinate to indeterminate cell fates, Genes Del,. 7, 787–795.

    Google Scholar 

  • Smith, L.G., Breene, B., Veit, B. and Hake, S. (1992). A dominant mutation in the maize homeobox gene, Knotted-I, causes its ectopic expression in leaf cells with altered fates, Development 116, 21–30.

    PubMed  CAS  Google Scholar 

  • Souer, E., Van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell 85, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Springer, P.S., Holding, D.R., Groover, A., Yordan, C. and Martienssen, R.A. (2000) The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G1 phase and is required maternally for early Arabidopsis development, Development 127, 1815–1822.

    PubMed  CAS  Google Scholar 

  • Steeves, T.A. and Sussex, I.M. (1989) Patterns in Plant Development, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Galweiler, L., Palme, K. and Jürgens, G. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science 289, 316–318.

    Article  Google Scholar 

  • Stewart, R.N. and Dermen, H. (1975) Flexibility in ontogeny as shown by the contribution of the shoot apical layers to leaves of periclinal chimeras, Amer. J. Bot. 62, 935–947.

    Article  Google Scholar 

  • St. Johnston, D.S. and Ntisslein-Volhard, C. (1992) The origin of pattern and polarity in the Drosophila embryo, Cell 68, 201–219.

    Article  Google Scholar 

  • Sussex, I.M. and Rosenthal, D. (1973) Differential 3H-thymidine labelling of nuclei in the shoot apical meristem of Nicotiana, Bot Gaz. 134, 295–301.

    Article  CAS  Google Scholar 

  • Tian, H.-C. and Marcotrigiano, M. (1993) Origin and development of adventitious shoot meristems on plant chimeras, Dev. BioL 155, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Topping, J.F. and Lindsey, K. (1997) Promoter trap markers differentiate structural and

    Google Scholar 

  • positional components of polar development in Arabidopsis, Plant Cell 9 1713–1725. Topping, J.F., May, V.J., Muskett, P.R. and Lindsey, K. (1997) Mutations in the HYDRA]

    Google Scholar 

  • gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling

    Google Scholar 

  • morphogenesis, Development 124 4415–4424.

    Google Scholar 

  • Torres-Ruiz, R.A. and Jtirgens, G. (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development, Development 120, 2967–2978.

    PubMed  CAS  Google Scholar 

  • Torres-Ruiz, R.A., Lohner, A. and Jiirgens, G. (1996) The GURKE gene is required for normal organisation of the apical region in the Arabidopsis embryo, Plant J 10, 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Tykarska, T. (1976). Rape embryogenesis. I. The proembryo development, Acta Soc. Bot. Poloniae 45, 3–15.

    Google Scholar 

  • Tykarska, T. (1979) Rape embryogenesis II. Development of embryo proper, Acta Soc. Bot Poloniae 48, 391–421.

    Google Scholar 

  • van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. and Scheres, B. (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling, Nature 378, 62–65.

    Article  PubMed  Google Scholar 

  • van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. and Scheres, B. (1997) Short-range control of cell differentiation in the Arabidopsis root meristem, Nature 390, 287–289.

    Article  PubMed  CAS  Google Scholar 

  • van der Schoot, C. and Rinne, P. (1999) Networks for shoot design, Trends Plant ScL 1, 31–37.

    Article  Google Scholar 

  • Vernon, D.M. and Meinke, D.W. (1994) Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis, Dev. Biol. 165, 566–573.

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada, J.-P. Baskar, R. and Grossniklaus, U. (2000) Delayed activation of the paternal genome during seed development, Nature 404 91–94.

    Google Scholar 

  • Vielle-Calzada, J.-P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M.A. and Grossniklaus, U. (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity, Genes Dev. 13, 2971–2982.

    Article  PubMed  CAS  Google Scholar 

  • Vittorioso, P., Cowling, R, Faure, J.D., Caboche, M. and Bellini, C. (1998) Mutation in the Arabidopsis PASTICCINOI gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development, MoL CelL BioL 18, 3034–3043.

    PubMed  CAS  Google Scholar 

  • Vroemen, C.W., Langeveld, S., Mayer, U., Ripper, G., Jtirgens, G., Van Kammen, A. and De Vries, S.C. (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression, Plant Cell 8, 783–791.

    PubMed  CAS  Google Scholar 

  • West, M.A.L., Matsudaira Yee, K.L., Danao, J., Zimmerman, J.L., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1994) LEAFY COTYLEDON] is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis, Plant Cell 6, 1731–1745.

    CAS  Google Scholar 

  • White, C.N. and Rivin, C.J. (2000) Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signalling in cultured embryos, Plant Physiol. 122, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  • Willemse, M.T.M. and van Went, J.L. (1984) The female gametophyte, in B.M. Johri (ed.), Embryology of Angiosperms, Springer-Verlag, Berlin, pp. 159–196.

    Chapter  Google Scholar 

  • Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P. and Scheres, B. (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo, Development 125, 521–531.

    PubMed  CAS  Google Scholar 

  • Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E. and Benfey, P.N. (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot, Development 127, 595–603.

    PubMed  CAS  Google Scholar 

  • Yanagisawa, S. (1995) A novel DNA-binding domain that may form a single zinc finger motif, Nucleic Acids Res. 23, 3403–3410.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, E.C. and Meinke, D.W. (1993) Embryogenesis in angiosperms: Development of the suspensor, Plant Cell 5, 1371–1381.

    PubMed  Google Scholar 

  • Yeung, E.C. and Sussex, I.M. (1979) Embryogeny of Phaseolus coccineus: The suspensor and the growth of the embryo-proper in vitro, Z. Pflanzenphysiol. 91, 423–433.

    Google Scholar 

  • Zhang, J.Z. and Somerville, C.R. (1997) Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthestase in the twn2 mutant of Arabidopsis, Proc. Natl. Acad. Sci. USA 8, 7349–7355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schrick, K., Laux, T. (2001). Zygotic Embryogenesis: Developmental Genetics. In: Bhojwani, S.S., Soh, WY. (eds) Current Trends in the Embryology of Angiosperms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1203-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1203-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5679-5

  • Online ISBN: 978-94-017-1203-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics