Advertisement

Free Extensions of Group Actions, Induced Representations, and the Foundations of Physics

  • David J. Foulis
  • Alexander Wilce
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 111)

Abstract

Given a group G and a subgroup H of G, any action of H on a set S admits a canonical free extension to an action of the larger group G on a larger set X = G × H S. In this expository article (supplementary to the individual contributions of the authors), we outline the theory of such free extensions, and the parallel notion of the unitary representation of G induced by a unitary representation of H. To keep matters simple, we restrict our attention almost wholly to actions of finite groups on finite sets and finite-dimensional unitary spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Frobenius, G. (1898) Über relationen zwischen den characteren einer gruppe und ihrer untergruppen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 501–515.Google Scholar
  2. [2]
    Gudder, S. (1971) Representations of groups by automorphisms of orthomod-ular lattices and posets, Canadian Journal of Mathematics 23, 659–673.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Holevo, A.S. (1982) Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam.zbMATHGoogle Scholar
  4. [4]
    Jaynes, E.T. (1983) Papers on Probability, Statistics and Statistical Physics, R. D. Rosenkrantz (ed.), Synthese Library, 158, D. Reidel, Dordrecht/Boston.Google Scholar
  5. [5]
    Mackey, G.W. (1968) Induced Representations of Groups and Quantum Mechancis, W. A. Benjamin, New york.Google Scholar
  6. [6]
    Schroeck, F.E.Jr. (1996) Quantum Mechanics on Phase Space, Kluwer Aca-demic Publishers, Dordrecht.zbMATHCrossRefGoogle Scholar
  7. [7]
    Schroeck, F.E.Jr. (1997) Symmetry in quantum theory: implications for the convexity formalism, the measurement problem, and hidden variables, Foun-dations of Physics 27, 1375–1395.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Wielandt, H. (1964) Finite Permutation Groups, Academic Press, New York.zbMATHGoogle Scholar
  9. [9]
    Williams, F.L. (1982) Frobenius reciprocity and Lie group representations on d cohomology spaces, L’Enseignement Mathématique XXVIII, 3–30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • David J. Foulis
    • 1
  • Alexander Wilce
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of Massachusetts (Emeritus)AmherstUSA
  2. 2.Department of Mathematics and Computer ScienceJuniata CollegeHuntingdonUSA

Personalised recommendations