Observables in the Logico-Algebraic Approach

  • Pavel Pták
Part of the Fundamental Theories of Physics book series (FTPH, volume 111)


The notion of observable is a quantum mechanical variant of that of a random variable (see [32], [69], [20], [29], etc.). It is supposed to help in treating noncompatible events. In the logico-algebraic approach an observable is defined as a σ-additive measure with values in a “quantum logic” (= with values in an abstract σ-complete orthomodular poset). Though an individual observable ranges in a Boolean σ-algebra, non-classical phenomena occur when one develops “noncomutative” probability theory. First, the range Boolean σ-algebra does not have to be set-representable (even in the fundamental case of the Hilbert space logic!). Second, when one treats collections of observables, the respective range Boolean σ-algebras vary and often do not allow for an umbrella Boolean σ-algebra. In this article we want to survey a few lines of recent research on observables. We also want to formulate — in the main text and in the notes at the end (referred to as ) — some open questions which seem related to quantum axiomatics and noncommutative probability theory. An extensive bibliography of papers dealing with observables is also provided.


Boolean Algebra Quantum Logic Separable Banach Space Orthomodular Lattice Bounded Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G. and von Neumann, J. (1936) The logic of quantum mechanics, Annals of Mathematics 37, 823–843.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Brabec, J. and Ptäk, P. (1982) On compatibility in quantum logics, Founda-tions of Physics 12, 207–212.ADSCrossRefGoogle Scholar
  3. [3]
    Catlin, D. (1968) Spectral theory in quantum logics, International Journal of Theoretical Physics 1, 285–297.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Cooke, R., Keane, M. and Moran, W. (1985) An elementary proof of Gleason’s theorem, Mathematical Proceedings of the Cambridge Philosophical Society 98, 117–128.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    Cushen, C. and Hudson, R. (1971) A quantum-mechanical central limit the-orem, Journal of Applied Probability 8, 454–469.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Davies, R.O. (1971) Measures not approximable or not specifiable by means of balls, Mathematika 18, 157–160.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    de Lucia, P. and Ptäk, P. (1992) Quantum probability spaces that are nearly classical, Bulletin of the Polish Academy of Sciences — Math. 40, 163–173.zbMATHGoogle Scholar
  8. [8]
    De Simone, A., Navara, M. and Ptäk, P. (n.d.) On interval homogeneous orthomodular lattices, To appear.Google Scholar
  9. [9]
    Dorninger, D., Länger, H. and Mgczyfiski, M. (1983) Zur Darstellung von Ob-servablen auf a-stetigen Quantenlogiken, Sitzungsberichte von Osterreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse. II 192, 169–176zbMATHGoogle Scholar
  10. [10]
    Dravecky, J. and Sipos, J. (1980) On the additivity of Gudder integral, Math-ematica Slovaca 30, 299–303.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Dvureéenskij, A. (1979) Laws of large numbers and the central limit theorem on a logic, Mathematica Slovaca 29, 397–410.MathSciNetGoogle Scholar
  12. [12]
    Dvurecenskij, A. and Pulmannovâ, S. (1982) On joint distributions of observables, Mathematica Slovaca 32, 155–166.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Dvurecenskij, A. and Pulmannovâ, S. (1984) Connection between joint distributions and compatibility, Reports on Mathematical Physics 19, 349–359.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    Dvurecenskij, A. and Pulmannovâ, S. (1989) Type II joint distribution and compatibility of observables, Demonstratio Mathematica 22, 479–497.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Foulis, D. and Ptâk, P. (1995) On absolutely compatible elements and hidden variables in quantum logics, Richerche di Matematica 44, Fasc. 1, 19–29.zbMATHGoogle Scholar
  16. [16]
    Greechie, R. (1971) Orthomodular lattices admitting no states, Journal of Combinatorial Theory 10, 119–132.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Gudder, S. (1965) Spectral methods for a generalized probability theory, Transactions of the American Mathematical Society 119, 428–442.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Gudder. S. (1966) Uniqueness and existence properties of bounded observables, Pacific Journal of Mathematics 19, 81–93, 588–589.Google Scholar
  19. [19]
    Gudder, S. (1973) Generalized measure theory, Foundations of Physics 3, 399–411.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Gudder, S. (1979) Stochastic Methods in Quantum Mechanics, Elsevier & North—Holland, Amsterdam.zbMATHGoogle Scholar
  21. [21]
    Gudder, S. and Marchand, J. (1972) Noncommutative probability on von Neumann algebras, Journal of Mathematical Physics 13, 799–806.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    Gudder, S. and Mullihin, H. (1973) Measure theoretic convergence of observables and operators, Journal of Mathematical Physics 14, 234–242.MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    Gudder, S. and Piron, C. (1972) Observables and the field in quantum mechanics, Journal of Mathematical Physics 12, 1583–1588.MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    Harman, B. and Riecan, B. (1982) On the martingale convergence theorem in quantum theory, Transactions of the 9th Prague Conference on Information Theory, Stochastic Decision Functions and Random Processes ( Academia, Prague, 1983 ).Google Scholar
  25. [25]
    Jackson, S. and Mauldin, R.D. (n.d.) On the a-class generated by open balls, To appear.Google Scholar
  26. [26]
    Kalmär, I.G. (1978) Atomistic orthomodular lattices and a generalized probability theory, Publicationes Mathematicae Debrecen 25, 139–153MathSciNetGoogle Scholar
  27. [27]
    Keleti, T. and Preiss D. (n.d.) The balls do not generate all Borel sets using complements and countable disjoint union, To appear.Google Scholar
  28. [28]
    Kronfli, N. (1970) Integration theory of observables, International Journal of Theoretical Physics 3, 199–204.MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    Länger, H. and Mgczynski, M. (1988) An order-theoretical characterization of spectral measures, Contributions to General Algebra 6, 181–188.Google Scholar
  30. [30]
    Loomis, L. (1947) On the representation of a-complete Boolean algebras, Bulletin of the American Mathematical Society 53, 757–760.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    Lutterovâ, T. and Pulmannovâ, S. (1985) An individual ergodic theorem on the Hilbert space logic, Mathematica Slovaca 35, 361–371.MathSciNetzbMATHGoogle Scholar
  32. [32]
    Mackey, G. (1963) The Mathematical Foundations of Quantum Mechanics, Benjamin, New York.zbMATHGoogle Scholar
  33. [33]
    Magfk, J. (1956) Baireova a Borelova mfra, Casopis pro péstovdni matematiky 81, 431–450 (appeared in English in Czechoslovak Mathematical Journal in 1957).Google Scholar
  34. [34]
    Navara, M. (1984) The integral on a-classes is monotonic, Reports on Math-ematical Physics 20, 417–421.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [35]
    Navara, M. (1989) When is the integral on quantum probability space addi-tive?, Real Analysis Exchange 14, 228–234.MathSciNetzbMATHGoogle Scholar
  36. [36]
    Navara, M. (1995) Uniqueness of bounded observables, Annales de l’Institut Henri Poincaré–Theoretical Physics 63, 155–176.MathSciNetzbMATHGoogle Scholar
  37. [37]
    Navara, M. and Ptak, P. (1983) Two-valued measures on σ-classes, asopis pro péstovdni matematiky 108, 225–229.MathSciNetzbMATHGoogle Scholar
  38. [38]
    Navara, M. and Ptak, P. (1983) On the Radon-Nikodym property for σ-classes, Journal of Mathematical Physics 24, 1450.MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    Neubrunn, T. (1970) A note on quantum probability spaces, Proceedings of the American Mathematical Society 25, 672–675.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    Neubrunn, T. (1974) On certain generalized random variables, Acta Facultatis Rerum Naturaliurn Universitatis Comenianae: Mathematica 29, 1–6.MathSciNetzbMATHGoogle Scholar
  41. [41]
    Nikodym, O.M. (1957) Critical remarks on some basic notions in Boolean lattices II, Rendiconti del Seminario Matematico della Universita di Padova 27, 193–217.MathSciNetzbMATHGoogle Scholar
  42. [42]
    Olerek, V. (1995) The σ–class generated by balls contains all Borel sets, Proceedings of the American Mathematical Society 123, 3665–3675.MathSciNetGoogle Scholar
  43. [43]
    Ovtchinikoff, P. and Sultanbekoff, F. (1996) Notes on Gudder’s integral, Preprint.Google Scholar
  44. [44]
    Preiss, D. and Tiger, J. (1991) Measures in Banach spaces are determined by their values on balls, Mathematica 38, 391–397.zbMATHGoogle Scholar
  45. [45]
    Ptak, P. (1984) Spaces of observables, Czechoslovak Mathematical Journal 34, 552–561.MathSciNetGoogle Scholar
  46. [46]
    Ptak, P. (1987) Exotic logics, Colloquium Mathematicum 54, 1–7.MathSciNetzbMATHGoogle Scholar
  47. [47]
    Ptak, P. (1987) An observation on observables, Prdce OVUT 4, 81–86.MathSciNetGoogle Scholar
  48. [48]
    Ptak, P. (1990) Measure-determined enlargements of Boolean σ-algebras, Commentationes Mathematicae Universitatis Carolinae 31, 105–107.MathSciNetzbMATHGoogle Scholar
  49. [49]
    Ptak, P. (1981) Realcompactness and the notion of observable, Journal of the London Mathematical Society 23, 534–536.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    Ptak, P. and Pulmannova, S. (1991) Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers.Google Scholar
  51. [51]
    Ptak, P. and Rogalewicz, V. (1983) Regularly full logics and the uniqueness problem for observables, Annales de l’Institut Henri Poincaré A 38, 69–74.MathSciNetzbMATHGoogle Scholar
  52. [52]
    Ptak, P. and Rogalewicz, V. (1983) Measures on orthomodular partially or-dered sets, Journal of Pure and Applied Algebra 28, 75–80.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    Ptâk, P. and Tkadlec, J. (1988) A note on determining of states, Casopis pro péstovânI matematiky 113, 435–436.zbMATHGoogle Scholar
  54. [54]
    Ptâk, P. and Wright, J.D.M. (1985) On the concreteness of quantum logics, Aplikace Matematiky 30, 274–285.MathSciNetzbMATHGoogle Scholar
  55. [55]
    Pulmannovâ, S. (1981) On the observables on quantum logics, Foundations of Physics 11, 127–136.MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    Pulmannovâ, S. (1984) On a characterization of linear subspaces of observables, Demonstratio Mathematica 17, 1073–1078.MathSciNetzbMATHGoogle Scholar
  57. [57]
    Pulmannovâ, S. (1986) Joint distributions of observables on spectral logics, Reports on Mathematical Physics 26, 67–71.ADSCrossRefGoogle Scholar
  58. [58]
    Pulmannovâ. S. and Dvurecenskij, A. (1985) Uncertainty principle and joint distributions of observables, Annales de l’Institut Henri Poincaré A 42, 253–265.zbMATHGoogle Scholar
  59. [59]
    Pulmannovâ, S. and Stehlikovâ, B. (1986) Strong law of large numbers and central limit theorem on a Hilbert space, Reports on Mathematical Physics 23, 99–107.MathSciNetADSzbMATHCrossRefGoogle Scholar
  60. [60]
    Rogalewicz, V. (1984) A note on the uniqueness problem for observables, Acta Polytechnica (Prague) VI, 107–111.MathSciNetGoogle Scholar
  61. [61]
    Rogalewicz, V. (1984) On the uniqueness problem for quite full logics, Annales de l’Institut Henri Poincaré, Sect. A 41, 445–451.MathSciNetzbMATHGoogle Scholar
  62. [62]
    Rüttimann, G. (1977) Jauch-Piron states, Journal of Mathematical Physics 18, 189–193.MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. [63]
    Shultz, F.W. (1977) Events and observables in axiomatic quantum mechanics, International Journal of Theoretical Physics, 16, 259–272.MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. [64]
    Sikorski, R. (1949) On inducing of homomorphisms by mappings, Fundamenta Mathematicae 36, 7–22.MathSciNetzbMATHGoogle Scholar
  65. [65]
    Sikorski, R. (1964) Boolean Algebras, Springer-Verlag, Heidelberg.zbMATHGoogle Scholar
  66. [66]
    Sipos, J. (1979) Integral with respect to a pre-measure, Mathematica Slovaca 29, 141–155.MathSciNetzbMATHGoogle Scholar
  67. [67]
    Urbanik, K. (1961) Joint probability distributions of observables in quantum mechanics, Studia Mathematica 21, 117–133.MathSciNetzbMATHGoogle Scholar
  68. [68]
    Urbanik, K. (1985) Joint distributions and compatibility of observables, Demonstratio Mathematica 18, 31–41.MathSciNetzbMATHGoogle Scholar
  69. [69]
    Varadarajan, V. (1968–1970) Geometry of Quantum Theory I & II, Van Nostrand, Princeton.Google Scholar
  70. [70]
    Zerbe, J. and Gudder, S. (1985) Additivity of integrals on generalized measure spaces, Journal of Combinatorial Theory A 39, 42–51.MathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    Zierler, U. (1967) Order properties of bounded observables, Proceedings of the American Mathematical Society 20, 272–280.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Pavel Pták
    • 1
  1. 1.Department of MathematicsCzech Technical UniversityPrague 6Czech Republic

Personalised recommendations