Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 111))

Abstract

We illustrate the idea that quantales can be regarded as algebras of experimental observations on physical systems, and we give a survey of some research in computer science where this idea has been used. We extend the mathematical framework hitherto available so that it can be applied to more general systems than before, in particular to quantum systems and systems whose behaviour is partially unobservable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S. (1987) Domain Theory and the Logic of Observable Properties, Doctoral Dissertation, Queen Mary College, University of London.

    Google Scholar 

  2. Abramsky, S. (1991) Domain theory in logical form, Annals of Pure and Applied Logic 51, 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramsky, S. and Vickers, S. (1993) Quantales, observational logic and process semantics, Mathematical Structures in Computer Science 3, 161–227.

    Article  MathSciNet  MATH  Google Scholar 

  4. Amira, H., Coecke, B. and Stubbe, I. (1998) How quantales emerge by introducing induction in the operational approach, Helvetica Physica Acta 71, 554–572.

    MathSciNet  MATH  Google Scholar 

  5. Baeten, J. and Weijland, W. (1990) Process Algebra,Cambridge University Press.

    Google Scholar 

  6. Banaschewski, B. and Mulvey, C.J. (2000) The spectral theory of commutative C*-algebras, To appear.

    Google Scholar 

  7. Bergstra, J. and Klop, J. (1984) Process algebra for synchronous communication, Information and Control 60, 109–137.

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G. (1967) Lattice Theory,American Mathematical Society.

    Google Scholar 

  9. Borceux, F. and Stubbe, I. (2000) Short introduction to enriched categories, This volume.

    Google Scholar 

  10. Coecke, B. and Stubbe, I. (1999a) On a duality of quantales emerging from an operational resolution, International Journal of Theoretical Physics 38, 3269–3281.

    Article  MathSciNet  MATH  Google Scholar 

  11. Coecke, B. and Stubbe, I. (1999b) Operational resolutions and state transitions in a categorical setting, Foundations of Physics Letters 12, 29–49.

    Article  MathSciNet  ADS  Google Scholar 

  12. Engberg, U. and Winskel, G. (1990) Petri nets as models of linear logic, In Proc. CAAP’90,LNCS 431, pp. 147–161, Springer-Verlag.

    Google Scholar 

  13. Engberg, U. and Winskel, G. (1993) Completeness results for linear logic on Petri nets, In Proc. MFCS’93,LNCS 711, Springer-Verlag.

    Google Scholar 

  14. Girard, J.-Y. (1987) Linear logic, Theoretical Computer Science 50, 1–102.

    Article  MathSciNet  MATH  Google Scholar 

  15. van Glabbeek, R. (1990) The linear time — branching time spectrum, In J. Baeten and J. Klop, Eds., Proc. CONCUR’90, LNCS 458, pp. 278–297, Springer-Verlag.

    Google Scholar 

  16. van Glabbeek, R. (1993) The linear time — branching time spectrum II; the semantics of sequential systems with silent moves, Extended abstract in E. Best, Ed., Proc. CONCUR’93, LNCS 715, pp. 66–81, Springer-Verlag.

    Google Scholar 

  17. van Glabbeek, R. and Goltz, U. (1989) Equivalence notions for concurrent systems and refinement of actions, In A. Kreczmar and G. Mirkowska, Eds., Proc. MFCS’89, LNCS 379, pp. 237–248, Springer-Verlag.

    Google Scholar 

  18. Hoare, C. (1985) Communicating Sequential Processes,Prentice Hall.

    Google Scholar 

  19. Johnstone, P. (1982) Stone Spaces,Cambridge University Press.

    Google Scholar 

  20. Joyal, A. and Tierney, M. (1984) An Extension of the Galois Theory of Grothendieck,Memoirs of the American Mathematical Society 309.

    Google Scholar 

  21. Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag (2nd edition in 1998 ).

    Google Scholar 

  22. Milner, R. (1980) A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, Reprinted as Report ECS-LFCS-86–7, Computer Science Department, University of Edinburgh, 1986.

    Book  MATH  Google Scholar 

  23. Milner, R. (1989) Communication and Concurrency,Prentice Hall.

    Google Scholar 

  24. Milner, R. (1999) Communicating and Mobile Systems: the 7r-calculus,Cam-bridge University Press.

    Google Scholar 

  25. Moore, D.J. (1999) On state spaces and property lattices, Studies in History and Philosophy of Modern Physics 30, 61–83.

    Article  MATH  Google Scholar 

  26. Mulvey, C.J. (1986) Sz, Supplement° ai Rendiconti del Circolo Matematico di Palermo II 12, 99–104.

    MathSciNet  MATH  Google Scholar 

  27. Mulvey, C.J. and Wick Pelletier, J. (2000) On the quantisation of points, Journal of Pure and Applied Algebra, To appear.

    Google Scholar 

  28. Parrow, J. and Victor, B. (1998) The fusion calculus: expressiveness and symmetry in mobile processes, In Proc. 13th Ann. IEEE Symp. Logic in Computer Science.

    Google Scholar 

  29. Paseka, J. and RosickY, J. (2000) Quantales, This volume.

    Google Scholar 

  30. Piron, C. (1976) Foundations of Quantum Physics, W.A. Benjamin, Inc.

    MATH  Google Scholar 

  31. Pnueli, A. (1985) Linear and branching structures in the semantics and logics of reactive systems, In W. Brauer, Ed., Proc. ICALP85, LNCS 194, pp. 15–32, Springer-Verlag.

    Google Scholar 

  32. Pratt, V. (1986) Modeling concurrency with partial orders, International Journal of Parallel Programming 15, 33–71.

    Article  MathSciNet  MATH  Google Scholar 

  33. Resende, P. (1999a) Modular specification of concurrent systems with ob-servational logic, In J. L. Fiadeiro, Ed., Recent Developments in Algebraic Development Techniques, LNCS 1589, pp. 310–325, Springer-Verlag.

    Google Scholar 

  34. Resende, P. (1999b) Quantales, concurrent observations and event structures, Preprint, Departamento de MatemAtica, Instituto Superior Técnico, Lisboa.

    Google Scholar 

  35. Resende, P. (2000) Quantales, finite observations and strong bisimulation, Theoretical Computer Science, To appear.

    Google Scholar 

  36. Rosenthal, K. (1990) Quantales and Their Applications,Pitman Research Notes in Mathematics Series 234, Longman.

    Google Scholar 

  37. Smyth, M. (1983) Powerdomains and predicate transformers: a topological view, In J. Diaz, Ed., Automata, Languages and Programming, LNCS 154, pp. 662–675, Springer-Verlag.

    Google Scholar 

  38. Stoy, J.E. (1977) Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,The MIT Press.

    Google Scholar 

  39. Vickers, S. (1989) Topology Via Logic,Cambridge University Press.

    Google Scholar 

  40. Vickers, S. (1996) Toposes pour les vraiment nuls, In A. Edalat, S. Jour-dan, and G. McCusker, Eds., Advances in Theory and Formal Methods of Computing, pp. 1–12, Imperial College Press, London.

    Google Scholar 

  41. Winskel, G. and Nielsen, M. (1995) Models for concurrency, In S. Abramsky, D. Gabbay and T. Maibaum, Eds., Handbook of Logic in Computer Science, Vol. 4, Oxford University Press.

    Google Scholar 

  42. Yetter, D.N. (1990) Quantales and (non commutative) linear logic, Journal of Symbolic Logic 55, 41–64.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Resende, P. (2000). Quantales and Observational Semantics. In: Coecke, B., Moore, D., Wilce, A. (eds) Current Research in Operational Quantum Logic. Fundamental Theories of Physics, vol 111. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1201-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1201-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5437-1

  • Online ISBN: 978-94-017-1201-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics