Advertisement

Quantales and Observational Semantics

  • Pedro Resende
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 111)

Abstract

We illustrate the idea that quantales can be regarded as algebras of experimental observations on physical systems, and we give a survey of some research in computer science where this idea has been used. We extend the mathematical framework hitherto available so that it can be applied to more general systems than before, in particular to quantum systems and systems whose behaviour is partially unobservable.

Keywords

Complete Lattice Process Semantic Linear Logic Label Transition System Concurrent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramsky, S. (1987) Domain Theory and the Logic of Observable Properties, Doctoral Dissertation, Queen Mary College, University of London.Google Scholar
  2. [2]
    Abramsky, S. (1991) Domain theory in logical form, Annals of Pure and Applied Logic 51, 1–77.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Abramsky, S. and Vickers, S. (1993) Quantales, observational logic and process semantics, Mathematical Structures in Computer Science 3, 161–227.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Amira, H., Coecke, B. and Stubbe, I. (1998) How quantales emerge by introducing induction in the operational approach, Helvetica Physica Acta 71, 554–572.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Baeten, J. and Weijland, W. (1990) Process Algebra,Cambridge University Press.Google Scholar
  6. [6]
    Banaschewski, B. and Mulvey, C.J. (2000) The spectral theory of commutative C*-algebras, To appear.Google Scholar
  7. [7]
    Bergstra, J. and Klop, J. (1984) Process algebra for synchronous communication, Information and Control 60, 109–137.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Birkhoff, G. (1967) Lattice Theory,American Mathematical Society.Google Scholar
  9. [9]
    Borceux, F. and Stubbe, I. (2000) Short introduction to enriched categories, This volume.Google Scholar
  10. [10]
    Coecke, B. and Stubbe, I. (1999a) On a duality of quantales emerging from an operational resolution, International Journal of Theoretical Physics 38, 3269–3281.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Coecke, B. and Stubbe, I. (1999b) Operational resolutions and state transitions in a categorical setting, Foundations of Physics Letters 12, 29–49.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Engberg, U. and Winskel, G. (1990) Petri nets as models of linear logic, In Proc. CAAP’90,LNCS 431, pp. 147–161, Springer-Verlag.Google Scholar
  13. [13]
    Engberg, U. and Winskel, G. (1993) Completeness results for linear logic on Petri nets, In Proc. MFCS’93,LNCS 711, Springer-Verlag.Google Scholar
  14. [14]
    Girard, J.-Y. (1987) Linear logic, Theoretical Computer Science 50, 1–102.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    van Glabbeek, R. (1990) The linear time — branching time spectrum, In J. Baeten and J. Klop, Eds., Proc. CONCUR’90, LNCS 458, pp. 278–297, Springer-Verlag.Google Scholar
  16. [16]
    van Glabbeek, R. (1993) The linear time — branching time spectrum II; the semantics of sequential systems with silent moves, Extended abstract in E. Best, Ed., Proc. CONCUR’93, LNCS 715, pp. 66–81, Springer-Verlag.Google Scholar
  17. [17]
    van Glabbeek, R. and Goltz, U. (1989) Equivalence notions for concurrent systems and refinement of actions, In A. Kreczmar and G. Mirkowska, Eds., Proc. MFCS’89, LNCS 379, pp. 237–248, Springer-Verlag.Google Scholar
  18. [18]
    Hoare, C. (1985) Communicating Sequential Processes,Prentice Hall.Google Scholar
  19. [19]
    Johnstone, P. (1982) Stone Spaces,Cambridge University Press.Google Scholar
  20. [20]
    Joyal, A. and Tierney, M. (1984) An Extension of the Galois Theory of Grothendieck,Memoirs of the American Mathematical Society 309.Google Scholar
  21. [21]
    Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag (2nd edition in 1998 ).Google Scholar
  22. [22]
    Milner, R. (1980) A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, Reprinted as Report ECS-LFCS-86–7, Computer Science Department, University of Edinburgh, 1986.zbMATHCrossRefGoogle Scholar
  23. [23]
    Milner, R. (1989) Communication and Concurrency,Prentice Hall.Google Scholar
  24. [24]
    Milner, R. (1999) Communicating and Mobile Systems: the 7r-calculus,Cam-bridge University Press.Google Scholar
  25. [25]
    Moore, D.J. (1999) On state spaces and property lattices, Studies in History and Philosophy of Modern Physics 30, 61–83.zbMATHCrossRefGoogle Scholar
  26. [26]
    Mulvey, C.J. (1986) Sz, Supplement° ai Rendiconti del Circolo Matematico di Palermo II 12, 99–104.MathSciNetzbMATHGoogle Scholar
  27. [27]
    Mulvey, C.J. and Wick Pelletier, J. (2000) On the quantisation of points, Journal of Pure and Applied Algebra, To appear.Google Scholar
  28. [28]
    Parrow, J. and Victor, B. (1998) The fusion calculus: expressiveness and symmetry in mobile processes, In Proc. 13th Ann. IEEE Symp. Logic in Computer Science.Google Scholar
  29. [29]
    Paseka, J. and RosickY, J. (2000) Quantales, This volume.Google Scholar
  30. [30]
    Piron, C. (1976) Foundations of Quantum Physics, W.A. Benjamin, Inc.zbMATHGoogle Scholar
  31. [31]
    Pnueli, A. (1985) Linear and branching structures in the semantics and logics of reactive systems, In W. Brauer, Ed., Proc. ICALP85, LNCS 194, pp. 15–32, Springer-Verlag.Google Scholar
  32. [32]
    Pratt, V. (1986) Modeling concurrency with partial orders, International Journal of Parallel Programming 15, 33–71.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Resende, P. (1999a) Modular specification of concurrent systems with ob-servational logic, In J. L. Fiadeiro, Ed., Recent Developments in Algebraic Development Techniques, LNCS 1589, pp. 310–325, Springer-Verlag.Google Scholar
  34. [34]
    Resende, P. (1999b) Quantales, concurrent observations and event structures, Preprint, Departamento de MatemAtica, Instituto Superior Técnico, Lisboa.Google Scholar
  35. [35]
    Resende, P. (2000) Quantales, finite observations and strong bisimulation, Theoretical Computer Science, To appear.Google Scholar
  36. [36]
    Rosenthal, K. (1990) Quantales and Their Applications,Pitman Research Notes in Mathematics Series 234, Longman.Google Scholar
  37. [37]
    Smyth, M. (1983) Powerdomains and predicate transformers: a topological view, In J. Diaz, Ed., Automata, Languages and Programming, LNCS 154, pp. 662–675, Springer-Verlag.Google Scholar
  38. [38]
    Stoy, J.E. (1977) Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,The MIT Press.Google Scholar
  39. [39]
    Vickers, S. (1989) Topology Via Logic,Cambridge University Press.Google Scholar
  40. [40]
    Vickers, S. (1996) Toposes pour les vraiment nuls, In A. Edalat, S. Jour-dan, and G. McCusker, Eds., Advances in Theory and Formal Methods of Computing, pp. 1–12, Imperial College Press, London.Google Scholar
  41. [41]
    Winskel, G. and Nielsen, M. (1995) Models for concurrency, In S. Abramsky, D. Gabbay and T. Maibaum, Eds., Handbook of Logic in Computer Science, Vol. 4, Oxford University Press.Google Scholar
  42. [42]
    Yetter, D.N. (1990) Quantales and (non commutative) linear logic, Journal of Symbolic Logic 55, 41–64.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Pedro Resende
    • 1
  1. 1.Departamento de MatemáticaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations