Advertisement

Quantales

  • Jan Paseka
  • Jiří Rosický
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 111)

Abstract

In this paper we survey aspects of the theory of quantales, starting from its connec-tion to locales and C*-algebras and finishing with recent developments involving the notions simplicity and spatiality.

Keywords

Residuated Lattice Frame Homomorphism Spatial Quantales Dual Atom Lambek Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akemann, C.A. (1970) Left ideal structure of Calgebras, Journal of Functional Analysis 6, 305–317.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Akemann, C.A. (1970) A Gelfand representation theory of Calgebras, Pacific Journal of Mathematics 6, 305–317.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Borceux, F. and Van Den Bossche, G. (1989) An essay on noncommutative topology, Topology and its Applications 31, 203–223.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Borceux, F., Rosickÿ, R. and Van Den Bossche, G. (1989) Quantales and C-algebras, Journal of the London Mathematical Society 40, 398–404.zbMATHCrossRefGoogle Scholar
  5. [5]
    Dilworth, R.P. (1939) Non-commutative residuated lattices, Transactions of the American Mathematical Society 46, 426–444.MathSciNetGoogle Scholar
  6. [6]
    Dixmier, J. (1977) Calgebras, North Holland, Amsterdam.Google Scholar
  7. [7]
    Giles, R. and Kummer, H. (1971) A non-commutative generalization of topology, Indiana University Mathematical Jounal 21, 91–102.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Girard, J.-Y (1997) Linear logic, Theoretical Computer Science, 50, 1–102.CrossRefGoogle Scholar
  9. [9]
    Johnstone, P.T. (1982) Stone Spaces, Cambridge UP, Cambridge.zbMATHGoogle Scholar
  10. [10]
    Joyal, A. and Tierney, M. (1984) An Extension of the Galois Theory of Grothendieck, Memoirs of the American Mathematical Society 309.Google Scholar
  11. [11]
    Kadison, R. and Ringrose, J. (1997) Fundamentals of the Theory of Operator Algebras, Academic Press, New York.Google Scholar
  12. [12]
    Krull, W. (1924) Axiomatische begründung der allgemeinen idealtheorie, Sitzungsberichte der Physikalisch-Medicinischen Sociatät zu Erlangen 56, 4763.Google Scholar
  13. [13]
    Kruml, D. (2000) Spatial quantales, Applied Categorical Structures, To appear.Google Scholar
  14. [14]
    Mulvey, C.J. (1986), Supplemento ai Rendiconti del Circolo Matematico di Palermo II 12, 99–104.MathSciNetGoogle Scholar
  15. [15]
    Mulvey, C.J. and Wick Pelletier, J. (1992) A quantisation of the calculus of relations, Canadian Mathematical Society Conference Proceeding 13, 345–360.Google Scholar
  16. [16]
    Mulvey, C.J. and Wick Pelletier, J. (n.d.) On the quantisation of points, To appear.Google Scholar
  17. [17]
    Paseka, J. (1997) Simple quantales, Proceedings of the Eighth Prague Topological Symposium 1996, (Topology Atlas 1997), 314–328.MathSciNetGoogle Scholar
  18. [18]
    Paseka, J. and Kruml, D. (2000) Embeddings of quantales into simple quantales, Journal of Pure and Applied Algebra, To appear.Google Scholar
  19. [19]
    Wick Pelletier, J. and Rosickÿ, J. (1997) Simple involutive quantales, Journal of Algebra 195, 367–386.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Rosenthal, K.I. (1990) Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman.Google Scholar
  21. [21]
    Rosickÿ, J. (1989) Multiplicative lattices and C*-algebras, Cahiers de Topologie et Géométrie Différentielle Catégoriques 30, 95–110.zbMATHGoogle Scholar
  22. [22]
    RosickSr, J. (1995) Characterizing spatial quantales, Algebra Universalis 34, 175–178.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Vickers, S. (1989) Topology via Logic, Cambridge UP, Cambridge.zbMATHGoogle Scholar
  24. [24]
    Ward, M. (1937) Residuations in structures over which a multiplication is defined, Duke Mathematical Journal 3, 627–636.MathSciNetCrossRefGoogle Scholar
  25. [25]
    Ward, M. (1938) Structure residuation, Annals of Mathematics 39, 558–568.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Ward, M. and Dilworth, R.P. (1939) Residuated lattices, Transactions of the American Mathematical Society 45, 335–354.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Jan Paseka
    • 1
  • Jiří Rosický
    • 1
  1. 1.Department of MathematicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations