Skip to main content

Transient Effects and Disturbed Conditions

Report of Working Group 4

  • Chapter
Cosmic Rays in the Heliosphere

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 3))

Abstract

In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on

  • phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere.

  • the present state of models for long term modulation and their shortcomings

  • the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)

  • charge dependent effects.

In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result K ∝ 1/B between the diffusion coefficient K and the field magnitude B. This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient from first principles. The three articles in this report essentially follow the list of open points and arguments just presented.

The article “Observations and Simple Models” is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. A comparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.

The “Modeling of Merged Interaction Regions” summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The combination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.

The “Remarks on the Diffusion Tensor in the Heliosphere” describe available theories of perpendicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the “Diffusion Tensor throughout the Heliosphere” which played an important role in all working groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananth, A.G., and Venkatesan, D.: 1993, ‘Effects of Interplanetary Shocks and Magnetic Clouds on Onset of Cosmic Ray Decreases’, Solar Phys. 143, 373.

    Article  ADS  Google Scholar 

  • Balogh, A.: 1998, Space Science Rev., this volume.

    Google Scholar 

  • Balogh, A., Smith, E.J., Tsurutani, B.T., Southwood, D.J., Forsyth, R.J. and Horbury, T.S.: 1995, ‘The Heliospheric Magnetic Field over the South Polar Region of the Sun’, Science 268, 1007.

    Article  ADS  Google Scholar 

  • Barnden, L.R.: 1973, ‘The Large-Scale Magnetic Field Configuration Associated with Forbush Decreases’, Proc. 13th Int. Cosmic Ray Conf. 2, 1277.

    ADS  Google Scholar 

  • Bazilevskaya, G.A., Krainev, M.B., and Sladkova, A.I.: 1997, ‘The Galactic Cosmic Ray Intensity in Maximum of Solar Cycle’, Preprint.

    Google Scholar 

  • Belov, A.V., Dorman, L.I., Eroshenko, E.A., lucci, N., Villoresi, G., and Yanke, V.G.: 1995, ‘Anisotropy of Cosmic Rays and Forbush Decreases in 1991’, Proc. 24th Int. Cosmic Ray Conf. 4, 912.

    Google Scholar 

  • Bialk, M.: 1996, Dissertation, University of Kiel.

    Google Scholar 

  • Bieber, J.W.: 1998, Space Science Rev., this volume.

    Google Scholar 

  • Bieber, J. W., and Pomerantz, M. A.: 1986, ‘Solar Cycle Variation of Cosmic Ray North-South Anisotropy and Radial Gradient’, Astrophys. J. 303, 843.

    Article  ADS  Google Scholar 

  • Bieber, J. W., and Burger, R. A.: 1990, ‘Cosmic-Ray Streaming in the Born Approximation’, Astrophys. J. 348, 597.

    Article  ADS  Google Scholar 

  • Bieber, J. W., and Chen, J.: 1991, ‘Cosmic-Ray Diurnal Anisotropy, 1936–1988: Implications for Drift and Modulation Theories’, Astrophys. J. 372, 301.

    Article  ADS  Google Scholar 

  • Bieber, J. W., and Rust, D.M.: 1996, ‘Escape of Magnetic Toroids from the Sun’ in D. Winterhalter et al. (eds.), Solar Wind 8, 430.

    Google Scholar 

  • Bieber, J. W., and Matthaeus, W. H.: 1997, ‘Perpendicular Diffusion and Drift at Intermediate Cosmic-Ray Energies’, Astrophys. J. 485, 655.

    Article  ADS  Google Scholar 

  • Bieber, J. W., Evenson, P., and Matthaeus, W. H.: 1987, ‘Magnetic Helicity of the IMF and the Solar Modulation of Cosmic Rays’, Geophys. Res. Let. 14, 864.

    Article  ADS  Google Scholar 

  • Bieber, J.W., Chen, J., Matthaeus, W.H., Smith, C.W., and Pomerantz, M.W.: 1993, ‘Long-Term Variations of Interplanetary Magnetic Field Spectra with Implications for Cosmic Ray Modulation’ J. Geophys. Res. 98, 3585.

    Article  ADS  Google Scholar 

  • Bieber, J. W., Matthaeus, W. H., Smith, C. W., Wanner, W., Kallenrode, M.-B., and Wibberenz, G.: 1994, ‘Proton and Electron Mean Free Paths: The Palmer Consensus Revisited’, Astrophys. J. 420, 294.

    Article  ADS  Google Scholar 

  • Bieber, J. W., Wanner, W., and Matthaeus, W. H.: 1996, ‘Dominant Two-Dimensional Solar wind Turbulence with Implications for Cosmic Ray Transport’, J. Geophys. Res. 101, 2511.

    Article  ADS  Google Scholar 

  • Bothmer, V., Heber, H., Kunow, H., Müller-Mellin, R., Wibberenz, G., Gosling, J.T., Balogh, A., Raviart, A., and Paizis, C.: 1997, ‘The Effects of Coronal Mass Ejections on Galactic Cosmic Rays in the High Latitude Heliosphere: Observations from Ulysses’ First Orbit’, Proc. 25th Int. Cosmic Ray Conf. 1, 333.

    Google Scholar 

  • Burger, R. A.: 1990, ‘Effect of Small and Large Scale Length Perturbations on Particle Drifts’, in S. Grzedzielski and D. E. Page (eds.), Physics of the Outer Heliosphere, Pergamon-Press, Oxford, p. 179.

    Google Scholar 

  • Burlaga, L.F.: 1995, Interplanetary Magnetolzydrodynamics,Oxford Univ. Press, New York. Burlaga, L.F., and Ness, N.F.: 1998, Space Sci. Rev., this volume.

    Google Scholar 

  • Burlaga, McDonald, F.B., Ness, N.F., Schwenn, R., Lazarus, A.J., and Mariani, F.: 1984, ‘Interplanetary Flow Systems Associated with Cosmic Ray Modulation’, J. Geophys. Res. 89, 6579.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., McDonald, F. B., Goldstein, M. L., and Lazarus, A. J.: 1985. J.: 1985, ‘Cosmic Ray Modulation and Turbulent Interaction Regions near 11 AU’, J. Geophvs. Res. 90, 1 2027.

    Google Scholar 

  • Burlaga, L. F., Ness, N. F., and McDonald, F. B.: 1987, Large-Scale Fluctuations between 13 AU and 25 AU and their Effects on Cosmic Rays, J. Geophys. Res. 92, 13647.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., McDonald, F. B., and Ness, N. F.: 1993a, ‘Cosmic Ray Modulation and the distant heliospheric magnetic field - Voyager 1 and 2 observations from 1986 to 1989’, J. Geophys. Res. 98, 1.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Perko, J., and Pirraglia, J.: 1993b, ‘Cosmic Ray Modulation, Merged Interaction Regions, and Multifractals’, Astrophys. J. 407, 347.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ness, N.F., and McDonald, F.B.: 1995, ‘Magnetic Fields and Cosmic Rays in the Distant Heliosphere at Solar maximum: Voyager 2 Observations near 32 AU during 1990’ J. Geophys. Res. 100, 14 763.

    Google Scholar 

  • Burlaga, L.F., Ness, N.F. and Belcher, J.W.: 1997, ‘The Radial Evolution of Corotating Merged Interaction Regions and Flows between ~ 14 AU and 43 AU’, J. Geophvs. Res. 102, 4661.

    Article  ADS  Google Scholar 

  • Campeanu, A., and Schlickeiser, R.: 1992, `Alfvén Wave Transmission and Stochastic Particle Acceleration at Parallel Astrophysical Shock Waves’, Astron. Astrophys. 263, 413.

    ADS  Google Scholar 

  • Cane, H.V.: 1993, `Cosmic Ray Decreases and Magnetic Clouds’, J. Geophys. Res. 98, 3509.

    Article  ADS  Google Scholar 

  • Cane, H. V., Richardson, I. G., von Rosenvinge, T. T., and Wibberenz, G.: 1994, ‘Cosmic Ray Decreases and Shock Structure: A Multispacecraft Study’, J. Geophys. Res. 99, 21–429.

    Article  ADS  Google Scholar 

  • Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1995, ‘The Response of Energetic Particles to the Presence of Ejecta Material’, Proc. 24th Int. Cosmic Ray Conf. 4, 377.

    Google Scholar 

  • Cane, H.V., Richardson, I.G., and von Rosenvinge, T.T.: 1996, ‘Cosmic Ray Decreases: 1964–1994’, J. Geophvs. Res. 101, 21 561.

    Google Scholar 

  • Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1997, ‘Helios 1 and 2 Observations of Particle Decreases, Ejecta, and Magnetic Clouds’, J. Geophys. Res. 102, 7075.

    Article  ADS  Google Scholar 

  • Chen, J., and Bieber, J. W.: 1993, ‘Cosmic-Ray Anisotropies and Gradients in Three Dimensions’, Astrophys. J. 405, 375.

    Article  ADS  Google Scholar 

  • Chih, P. C., and Lee, M. A.: 1986, ‘A Perturbation Approach to Cosmic Ray Transients in Interplanetary Space’, J. Geophys. Res. 91, 2903.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Dröge, W., and Müller-Mellin, R.: 1993, ‘Superevents and Cosmic Ray Modulation, 1974–1985’, J. Geophvs. Res. 98, 15 231.

    Google Scholar 

  • Cummings, A. C., and Stone, E.C.: 1998, Space Science Rev., this volume.

    Google Scholar 

  • Cummings, A. C., Stone, E. C., and Webber, W. R.: 1994, ‘Distance to the Solar Wind Termination Shock and the Source Flux of Anomalous Cosmic Rays during 1986–1988’, J. Geophys. Res. 99, 11–547.

    Article  Google Scholar 

  • Duggal, S. P., Forbush, S. E., and Pomerantz, M. A.: 1970, ‘The Variation with a Period of Two Solar Cycles in the Cosmic Ray Diurnal Anisotropy for the Nucleonic Component’, J. Geophys. Res. 75, 1150.

    Article  ADS  Google Scholar 

  • Evenson, R: 1998, Space Science Rev., this volume.

    Google Scholar 

  • Ferrando, P., Raviart, A., Haasbrock, L.J., Potgieter, M.S., Drocgc, W., Heber, B., Kunow, H., MüllerMellin, R., Sicrks, H., Wibberenz, G. and Paizis, C.: 1996, ‘Latitude Variations of -7 MeV and 300 MeV Cosmic Ray Electron Fluxes in the Heliosphere: Ulysses COSPIN/KET Results and Implications’, Astron. Astrophys., 316, 528.

    ADS  Google Scholar 

  • Fisk, L.A.: 1996, ‘Motion of the Footpoints of Heliospheric Magnetic Field Lines at the Sun: Implications for Recurrent Energetic Particle Events at High Heliographic Latitudes’, J. Geophvs. Res. 101, 15547.

    Article  ADS  Google Scholar 

  • Flückiger, E.O.: 1985, ‘Forbush Decreases, Geomagnetic and Atmospheric Effects, Cosmogenic Nuclides; Rapporteur Paper’, Proc. 19th Int. Cosmic Ray Conf. 9, 301.

    Google Scholar 

  • Forbush, S. E.: 1967, ‘A Variation with a Period of Two Solar Cycles in the Cosmic-Ray Diurnal Anisotropy’, J. Geophvs. Res. 72, 4937.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1969. ‘Variation with a Period of Two Solar Cycles in the Cosmic-Ray Diurnal Anisotropy and the Superposed Variations Correlated with Magnetic Activity’, J. Geophys. Res. 74, 3451.

    Article  ADS  Google Scholar 

  • Forman, M. A.: 1977, ‘The Velocity Correlation Function in Cosmic-Ray Diffusion Theory’, Astrophys. Space Sci. 49, 83.

    Article  ADS  Google Scholar 

  • Forman, M. A., and Gleeson, L. J.: 1975, ‘Cosmic-Ray Streaming and Anisotropy’, Astrophys. Space Sci. 32, 77.

    Article  ADS  Google Scholar 

  • Forman, M. A., Jokipii, J. R., and Owens, A. J.: 1974, ‘Cosmic-Ray Streaming perpendicular to the Mean Magnetic field’, Astrophvs. J. 192, 535.

    Article  ADS  Google Scholar 

  • Fujii, Z., and McDonald, F. B.: 1993, ‘Radial Gradients of the Galactic Cosmic Rays Observed from 1978 to 1992’, Proc. 23rd Int. Cosmic Ray Conf. 3, 477.

    Google Scholar 

  • Giacalone, J: 1998, Space Science Rey,this volume.

    Google Scholar 

  • Gleeson, L. J.: 1969, ‘The Equations Describing the Cosmic-Ray Gas in the Interplanetary Region’. Planet. Space Sci. 17, 31.

    Article  ADS  Google Scholar 

  • Haasbroek, L.J.: 1997, Dissertation, Potchefstroom University.

    Google Scholar 

  • Haasbroek, L.J., Potgieter, M.S. and le Roux, J.A.: 1995a,’A Computer Simulation of Large Cosmic

    Google Scholar 

  • Ray Decreases and their Effects on the Declining Modulation Cycle’, Adu Space Res. 16 209.

    Google Scholar 

  • Haasbroek, L.J., Potgieter, M.S. and le Roux, J.A.: 1995b, ‘The Time-Dependent Recovery after the Large Cosmic-Ray Decrease in 1991’, Proc. 24th hit. Cosmic Ray Conf. 4, 710.

    Google Scholar 

  • Heber, B., Raviart, A., Paizis, C., Bialk, M., Dröge, W., Ducros, R., Ferrando, P., Kunow, H., MüllerMcllin, R., Rastoin, C., Röhrs, K., and Wibberenz, G.: 1993, ‘Modulation of Galactic Cosmic Ray Particles observed on Board the Ulysses Spacecraft’. Proc. 23rd Im. Cosmic Ray Conf. 3, 461.

    Google Scholar 

  • Heber, B., Potgieter, M.S., Fernando, P., Wibberenz, G., Evenson. P., and Jokipii, J.R., in Fisk, L.A., Wenzel, K.-P., et al.: 1998, Space Science Rev.,this volume.

    Google Scholar 

  • Iucci, N., Pinter, S., Parisi, M., Storini, M., and Villoresi, G.: 1986, ‘The Longitudinal Asymmetry of the Interplanetary Perturbation Producing Forbush Decreases’, Nuovo Cim. 9 (1), 39.

    Article  ADS  Google Scholar 

  • Jokipii, J.R.: 1966, ‘Cosmic Ray Propagation, I, Charged Particles in a Random Magnetic field’, Astrophys. J. 146. 480.

    Article  ADS  Google Scholar 

  • Jokipii, J.R.: 1973, ‘Radial Variation of Magnetic Fluctuations and the Cosmic-Ray Diffusion tensor in the Solar Wind’, J. Geophvs. Res. 182, 585.

    Google Scholar 

  • Jokipii, J. R., and Parker, E. N.: 1969, ‘Stochastic Effects on Magnetic Lines of Force; with Application to Cosmic Ray Propagation’, Astrophys. J. 155, 777.

    Article  ADS  Google Scholar 

  • Jokipii, J. R.. and Kopriva, D. A.: 1979, ‘Ettècts of Particle Drift on the Transport of Cosmic Rays, III, Numerical Models of Galactic Cosmic-Ray Modulation’, Astrophys. J. 234, 384.

    Article  ADS  Google Scholar 

  • Jokipii, J.R., and Davila, J.M.: 1981. ‘Effects of Particle Drift on the Transport of Cosmic Rays, IV, More Realistic Diffusion Coefficients’, Astrophys. J. 248, 1156.

    Article  ADS  Google Scholar 

  • Jokipii, J.R., and Kota, J.: 1989, ‘The Polar Heliospheric Magnetic Field’, Geophys. Res. Lett. 16, 1.

    Article  ADS  Google Scholar 

  • Jokipii, J.R., and Kota, J.: 1995, Three-Dimensional Cosmic-Ray Simulations: Heliographic Latitude and Current-Sheet Tilt’, Space Sci. Rev. 72, 379.

    Article  ADS  Google Scholar 

  • Jokipii, J.R., and Giacalone, J: 1998, Space Sci. Rev., this volume.

    Google Scholar 

  • Jokipii, J. R., Levy, E. H., and Hubbard, W. B.: 1977, ‘Effects of Particle Drift on Cosmic-Ray Transport. I — General Properties, Application to Solar Modulation’, Astrophys. J. 213, 861.

    Article  ADS  Google Scholar 

  • Kadokura, A., and Nishida, A.: 1986, ‘Two-Dimensional Numerical Modeling of the Cosmic Ray Storm’, J. Geophvs. Res. 91, 13.

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B.: 1993. ‘Particle Propagation in the Inner Heliosphere’, J. Geophvs. Res. 98, 19037.

    Article  ADS  Google Scholar 

  • Kota, J., and Jokipii, J.R.: 1991, ‘The Role of Corotating Interaction Regions in Cosmic-Ray Modulation’ Geophys. Res. Lett. 18, 1797.

    Article  ADS  Google Scholar 

  • Kota, J., and Jokipii. J.R.: 1998, Space Sci. Refit,this volume.

    Google Scholar 

  • Kwiatkowski, B., and Lee, M.A.: 1991, ‘Forbush Decreases and Cosmic Ray Modulation at High Energies’ Proc. 22nd lit. Cosmic Ray Conf. 3, 601.

    Google Scholar 

  • Roux, J.A. and Potgieter, M.S.: 1990, `A Time-Dependent Drift Model for the Long-Term Modulation of Cosmic Rays with Special Reference to Asymmetries with Respect to the Solar Minimum of 1987’, Astrophys. J. 361, 275.

    Article  ADS  Google Scholar 

  • Roux, J.A., and Potgieter, M.S.: 1991, The Simulation of Forbush Decreases with Time-Dependent Cosmic-Ray Modulation Models of Varying Complexity’, Astron. Astrophys. 243, 531.

    ADS  Google Scholar 

  • Roux, J.A. and Potgieter, M.S.: 1995, ‘The Simulation of Complete 11 and 22 Year Modulation Cycles for Cosmic Rays in the Heliosphere using a Drift Model with Global Merged Interaction Regions’, Astrophys. J. 442, 847.

    Article  ADS  Google Scholar 

  • Levy, E. H.: 1976, ‘Theory of the Solar Magnetic Cycle Wave in the Diurnal Variation of Energetic Cosmic Rays: Physical basis of the Anisotropy’, J. Geophvs. Res. 81, 2082.

    Article  ADS  Google Scholar 

  • Lockwood, J.A.: 1971, ‘Forbush Decreases in the Cosmic Radiation’, Space Sci. Rev. 12, 658.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., and Webber, W.R.: 1984, ‘Observations of the Dynamics of the Cosmic Ray Modulation’, J. Geophvs. Res. 89, 17.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., and Webber, W.R.: 1996, W.R.: 1996, ‘Comparison of the Rigidity Dependence of the 11-Year Cosmic Ray Variation at the Earth in Two Solar Cycles of Opposite Magnetic Polarity’, J. Geophys. Res. 101, 2 1573.

    Google Scholar 

  • Lockwood, J.A., and Webber, W.R.: 1997, ‘A Comparison of Cosmic Ray Intensities near the Earth at the Sunspot minima in 1976 and 1987 and during 1995 and 1996’ J. Geophys. Res. 102, 24221.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Webber, W.R., and Jokipii, J.R.: 1986, ‘Characteristic Recovery Times of Forbush-Type Decreases in the Cosmic Radiation, I. Observations at Earth at Different Energies’ J. Geophvs. Res. 91, 2851.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Webber. W.R., and Debrunner, H.: 1991, ‘The Rigidity Dependence of Forbush Decreases Observed at the Earth’, J. Geophys. Res. 50, 5447.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., and Goldstein, M. L.: 1982, ‘Measurement of the Rugged Invariants of Magneto-hydrodynamic Turbulence in the Solar Wind’, J. Geophvs. Res. 87, 6011.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., Goldstein, M. L., and Roberts, D. A.: 1990, ‘Evidence for the Presence of QuasiTwo-Dimensional Nearly Incompressible Fluctuations in the Solar Wind’, J. Geophys. Res. 95, 20673.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., Gray, P. C., Pontius, D. H., Jr., and Bieber, J. W.: 1995, ‘Spatial Structure and Field-Line Diffusion in Transverse Magnetic Turbulence’, Phys. Rev. Lett. 75, 2136.

    Article  ADS  Google Scholar 

  • Matthews, T., Quenby, J.J., Sear, J.F.: 1971, ‘Mechanism for Cosmic Ray Modulation’, Nature 229, 246.

    Article  ADS  Google Scholar 

  • McDonald, F.B.: 1998, Space Sei. Rev, this volume.

    Google Scholar 

  • McDonald, F.B., Trainor, J.H., Trainor, J.D., Mihalov, J.D., Wolfe, J.H., and Webber, W.R.: 1981, ‘Radially propagating Shock Waves in the Outer Heliosphere’, Astrophys. J. 246, L165.

    Article  ADS  Google Scholar 

  • McKenzie, J.K., and Westphal, K.O.: 1969, Planet. Space Sci. 17, 1029.

    Article  ADS  Google Scholar 

  • McKibben, R.B.: 1998, Space Sci. Rea, this volume.

    Google Scholar 

  • Morfill, G.E., and Scholer, M.: 1977, ‘Influence of Interplanetary Shocks on Solar Particle Events’, Astrophys. Space Sci. 46, 73.

    Article  ADS  Google Scholar 

  • Morfill, G., Richter, A.K., and Scholer, M.: 1979, ‘Average Properties of Cosmic Ray Diffusion in Solar Wind Streams’, J. Geophys. Res. 84, 1505.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1982, ‘Numerical Evaluation of the Precursory Increase in the Forbush Decrease Expected from the Diffusion Convection Model’ J. Geophys. Res. 87, 6003.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1983, ‘Numerical Modeling of the Energy Spectrum of the Cosmic Ray Forbush Decrease’, J. Geophvs. Res. 88, 785.

    Article  ADS  MathSciNet  Google Scholar 

  • Palmer, I. D.: 1982, `Transport Coefficients of Low-Energy Cosmic Rays in Interplanetary Space’, Rev. Geophvs. Space Phv.s. 20, 335.

    Article  ADS  Google Scholar 

  • Perko, J.S., and Fisk, L.A.: 1983, ‘Solar Modulation of Galactic Cosmic Rays, 5, Time Dependent Modulation, J. Geophvs. Res. 88, 9033.

    Google Scholar 

  • Perko, J.S., and Burlaga, L.F.: 1992 ‘Intensity Variations in the Interplanetary Magnetic Field Measured by Voyager 2 and the 11-Year Solar Cycle Modulation of Galactic Cosmic Rays’, J. Geophys. Res. 97, 4305.

    Article  ADS  Google Scholar 

  • Potgieter, M.S.: 1993, ‘Time-Dependent Cosmic-Ray Modulation–Role of Drifts and Interaction Regions’, Adt: Space Res. 13, 239.

    Article  ADS  Google Scholar 

  • Potgieter, M.S.: 1995, The Time-Dependent Transport of Cosmic Rays in the Heliosphere’, Astrophys. Space Sci. 230, 393.

    Article  ADS  Google Scholar 

  • Potgieter, M.S.: 1996, ‘Heliospheric Modulation of Galactic Electrons’, J. Geophys. Res. 101, 24411.

    Article  ADS  Google Scholar 

  • Potgieter, M.S.: 1998, Space Sci. Rev,this volume.

    Google Scholar 

  • Potgieter, M. S., and Burger, R. A.: 1990, `The Modulation of Cosmic-Ray Electrons, Positrons and Helium nuclei as predicted by a Drift Model with a Simulated wavy neutral sheet’, Astral. Astrophys. 233. 598.

    ADS  Google Scholar 

  • Potgieter, M.S. and le Roux, J.A.: 1994, `The Long-Term Heliospheric Modulation of Galactic Cosmic Rays according to a Time-Dependent Drift Model with Merged Interaction Regions’, Astrophys. J. 423, 817.

    Article  ADS  Google Scholar 

  • Potgieter, M. S., Le Roux, J. A., and Burger, R. A.: 1989, ‘Interplanetary Cosmic Ray Radial Gradients with steady state Modulation Models’, J. Geophys. Res. 94, 2323.

    Article  ADS  Google Scholar 

  • Potgieter, M.S., le Roux, L.A., Burlaga, L.F., and McDonald, F.B.: 1993, ‘The Role of Merged Interaction Regions and Drifts in the Heliospheric Modulation of Cosmic Rays beyond 20 AU: a Computer Simulation’, Astrophys. J. 403, 760.

    Article  ADS  Google Scholar 

  • Pyle, K.R., Simpson, J.A., Barnes, A., and Mihalov, J.D.: 1984, ‘Shock Acceleration of Nuclei and Electrons in the Heliosphere beyond 24 AU’, Astrophys. J. 282, L107.

    Article  ADS  Google Scholar 

  • Reinecke, J.P.L., Moraal, H., and McDonald, F.B.: 1996, F.B.: 1996. ‘The Cosmic Radiation in the Heliosphere at Successive Solar Minima, 3, Steady State Drift Solutions of the Transport Equation’, J. Geophys. Res. 101, 2 1581.

    Google Scholar 

  • Richardson, I.G., Wihberenz, G., and Cane, H.V.: 1996, `The Relationship between Recurring Cosmic Ray Depressions and Corotating Solar Wind Streams at 1 AU’, J. Geophys. Res. 101, 13483.

    Article  ADS  Google Scholar 

  • Sanderson, T.R., Beeck, J., Marsden, R.G., Tranquille, C., Wenzel, K.-P., McKibben, R.B., and Smith, E.J.: 1990, ‘A Study of the Relation between Magnetic Clouds and Forbush Decreases’, Proc. 21 st Int. Cosmic Ray Conf. 6, 251.

    Google Scholar 

  • Schlickeiser, R., Campeanu, A., and Lerche. I.: 1993, `Stochastic Particle Acceleration at Parallel Astrophysical Shock Waves’, Astron. Astrophys. 276, 614.

    ADS  Google Scholar 

  • Smith. C.W. and Bieber, J.W.: 1991, ‘Solar Cycle Variation of the Interplanetary Magnetic Field Spiral’, Astrophys. J. 370, 435.

    Article  ADS  Google Scholar 

  • Smith. C. W., and Bieber, J. W.: 1993, ‘Detection of Steady Magnetic Helicity in Low-Frequency IMF Turbulence’, Proc. 23rd Intern. Cosmic Ray Conf. 3, 493.

    Google Scholar 

  • Stone, E. C., Cummings, A. C., and Webber, W. R.: 1996. R.: 1996, `The Distance to the Solar Wind Termination Shock in 1993 and 1994 from Observations of Anomalous Cosmic Rays’, J. Geophys. Res. 101, 1 1017.

    Google Scholar 

  • Thomas, B.T., and Gall, R.: 1984, ‘Solar-Flare-Induced Forbush Decreases: Dependence on Shock Wave Geometry’, J. Geophys. Res. 89, 2991.

    Article  ADS  Google Scholar 

  • Vanhoefer, O.: 1996, Master’s Thesis, University of Kiel.

    Google Scholar 

  • Webber, W. R., and Lockwood, J. A.: 1981, `A Study of the Long-Term Variation and Radial Gradient of Cosmic Rays out to 23 AU’, J. Geophys. Res. 86, 11 458.

    Google Scholar 

  • Webber, W.R., and Lockwood, J.A.: 1998, Space Sci. Rev,this volume.

    Google Scholar 

  • Webber, W.R., Lockwood, J.A. and Jokipii, J.R.: 1986, ‘Characteristics of Large Forbush-Type Decreases in the Cosmic Radiation II–Observations at Different Heliocentric Radial Distances’, J. Geophys. Res. 91, 4103.

    Article  ADS  Google Scholar 

  • Webber, W. R., Potgieter, M. S., and Burger, R. A.: 1990, ‘A comparison of Predictions of a Wavy Neutral Sheet Drift Model with Cosmic-Ray Data over a Whole Modulation Cycle — 1976–1987’, Astrophys. J. 349, 634.

    Article  ADS  Google Scholar 

  • Wibberenz, G., Cane, H.V., and Richardson, I.G: 1997, ‘Two-Step Forbush Decreases in the Inner Solar System’ Proc. 25th Int. Cosmic Ray Conf. 1, 397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wibberenz, G., Le Roux, J.A., Potgieter, M.S., Bieber, J.W. (1998). Transient Effects and Disturbed Conditions. In: Fisk, L.A., Jokipii, J.R., Simnett, G.M., von Steiger, R., Wenzel, KP. (eds) Cosmic Rays in the Heliosphere. Space Sciences Series of ISSI, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1189-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1189-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5032-8

  • Online ISBN: 978-94-017-1189-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics