Skip to main content

The Cosmic Ray Nucleonic Component: The Invention and Scientific Uses of the Neutron Monitor

Keynote Lecture

  • Conference paper
Cosmic Rays and Earth

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 10))

Abstract

The invention of the neutron monitor pile for the study of cosmic-ray intensity-time and energy changes began with the discovery in 1948 that the nucleonic component cascade in the atmosphere had a huge geomagnetic latitude dependence. For example, between 0° and 60° this dependence was a ~ 200–400% effect — depending on altitude — thus opening the opportunity to measure the intensity changes in the arriving cosmic-ray nuclei down to ~ 1–2 GeV nucl−1 for the first time. In these measurements the fast (high energy) neutron intensity was shown to be a surrogate for the nuclear cascade intensity in the atmosphere.

The development of the neutron monitor in 1948–1951 and the first geomagnetic latitude network will be discussed. Among its early applications were:

  1. (1)

    to prove that there exists interplanetary solar modulation of galactic cosmic-rays (1952), and;

  2. (2)

    to provide the evidence for a dynamical heliosphere (1956).

With the world-wide distribution of neutron monitor stations that are presently operating (~ 50) many novel investigations are still to be carried out, especially in collaborations with spacecraft experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, H. M., Bright, W. C., and Froman, D.: 1947, ‘Distribution of Neutrons in the Atmosphere’, Phys. Rev. 72, 203.

    Article  ADS  Google Scholar 

  • Babcock, H. W.: 1953, ‘The Solar Magnetograph’, Astrophys. J. 118, 397–396.

    Article  ADS  Google Scholar 

  • Bethe, H. A., Korff, S. A., and Placzek, G.: 1940, ‘On the Interpretation of Neutron Measurements in Cosmic Radiation’, Phys. Rev. 57, 573.

    Article  ADS  Google Scholar 

  • Blau, M. and Wambacher, H.: 1937, ‘Disintegration Processes by cosmic-rays with Simultaneous Emission of Several Heavy Particles’, Nature 140, 585.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, IQSY Instruction Manual 7, Deep River, Canada.

    Google Scholar 

  • Chupp, E. L., Debrunner, H., Flückiger, E., Forrest, D. J., Golliez, F., Kanbach, G., Vestrand, W. F., Cooper, J. J., and Share, G.: 1987, ‘Solar Neutron Emissivity During the Large Flare on 1982 June 3’, Astrophys. J. 318, 913–925.

    Google Scholar 

  • Compton, A. H., Wollan, E. O., and Bennett, R. D.: 1934, ‘A Precision Recording Cosmic-Ray Meter’, Rev. Sci. Instrum. 5, 415.

    Article  ADS  Google Scholar 

  • Davis, L., Jr.: 1955, ‘Interplanetary Magnetic Fields and cosmic-rays’, Phys. Rev. 100, 1440.

    Article  ADS  Google Scholar 

  • Debrunner, H., Flückiger, E. O., Chupp, E. L., and Forrest, D. J: 1983, ‘The Solar cosmic-ray Neutron Event on June 3, 1982’, Proc. 18th Int. cosmic-ray Conf, Bangalore 4, 75–78.

    Google Scholar 

  • Forbush, S. E.: 1954, ‘World-Wide cosmic-ray Variations, 1937–1952’, J. Geophys. Res. 59, 525.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1958, ‘cosmic-ray Variations, 1937–1952’, J. Geophys. Res. 63, 651.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1993, in J. A. VanAllen, cosmic-rays, the Sun and Geomagnetism: The Works of Scott E. Forbush, American Geophys. Union, Washington, D.C., Science 262, 1912.

    Google Scholar 

  • Katz, L., Meyer, P., and Simpson, J. A.: 1958, ‘Further Experiments Concerning the Geomagnetic Field Effective for cosmic-ray’, Nuovo Cimento (Suppl.) 8, 277.

    Article  Google Scholar 

  • Korff, S. A.: 1939, ‘Recent Studies at High Elevations’, Rev. Mod. Phys. 11, 211.

    Article  ADS  Google Scholar 

  • Lattes, C. M. G., Occhialini, G. P. S., and Powell, C. F.: 1947, ‘Observations on the Tracks of Slow Mesons in Photographic Emulsions’, Nature 160, 453–486.

    Article  ADS  Google Scholar 

  • Libby, W. F.: 1946, ‘Atmospheric Helium Three and Radiocarbon from Cosmic Radiation’, Phys. Rev. 69, 671.

    Article  ADS  Google Scholar 

  • Libby, W. F.: 1955, Radiocarbon Dating, University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Meyer, P. and Simpson, J. A.: 1955, ‘Changes in the Low Energy Particle Cut-Off and Primary Spectrum of Cosmic Radiation, I’, Phys. Rev. 99, 1517.

    Article  ADS  Google Scholar 

  • Meyer, P. and Simpson, J. A.: 1957, ‘Changes in the Low Energy Particle Cutoff and Primary Spectrum of Cosmic Rays, II’, Phys. Res. 106, 568.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E. N., and Simpson, J. A.: 1956, ‘The Solar cosmic-rays of February 1956 and Their Propagation Through Interplanetary Space’, Phys. Rev. 104, 768.

    Article  ADS  Google Scholar 

  • Morrison, P.: 1956, ‘Solar Origin of cosmic-ray Time Variations’, Phys. Rev. 101, 1397.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1956, ‘Solar Origin of cosmic-ray Time Variations’, Phys. Rev. 110, 1445.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.

    MATH  Google Scholar 

  • Pyle, K. R.: 1993, ‘The Haleakala cosmic-ray Neutron Monitor Station: Intercalibration With the Huancayo Station’, Proc. 23rd Int. cosmic-ray Conf 3, 609.

    Google Scholar 

  • Rose, D. C., Katzman, J., Fenton, K. B., and Simpson, J. A.; 1956, ‘Latitude Effect of the Cosmic Ray Nucleon and Meson Components at Sea Level from the Arctic to the Antarctic’, Can. J. Phys. 34, 968.

    Article  ADS  Google Scholar 

  • Schein, M., Jesse, W. P., and Wollan. E. O.: 1941, The Nature of the Primary Cosmic Radiation and the Origin of the Mesotron’, Phys. Rev. 59, 615.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Jr.: 1948, ‘The Latitude Dependence of Neutron Density in the Atmosphere as a Function of Altitude’, Phys. Rev. 73, 1389.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 1951, ‘Neutrons Produced in the Atmosphere by the Cosmic Radiations’, Phys. Rev. 83, 1175.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 1953, ‘Flying Atomic “Piles” ’, University of Chicago Magazine 45 (4), 5.

    Google Scholar 

  • Simpson, J. A.: 1957, The International Geophysical Year, University of Chicago Citizens Board, University of Chicago Press.

    Google Scholar 

  • Simpson, J. A.: 1958, ‘Cosmic Radiation Neutron Intensity Monitor’, Annals of the Int. Geophysical Year IV Part VII, Pergamon Press, London, p. 351.

    Google Scholar 

  • Simpson, J. A.: 1985, in H. Elliot and Y. Sekido (eds.), ‘Cosmic-Ray Astrophysics at Chicago (1947–1960)’, Early History of cosmic-ray Studies, D. Reidel Publ. Co., Dordrecht, Holland, p. 385.

    Google Scholar 

  • Simpson, J. A.: 1994, ‘A Physicist in the World of Geophysics and Space’, J. Geophys. Res. 99, 19159–19173.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 1998, ‘A Brief History of Recurrent Solar Modulation of the Galactic cosmic-rays (1937–1990)’, Space Sci. Rev. 83, 169–176.

    Article  ADS  Google Scholar 

  • Simpson, J. A. and Uretz, R. B.: 1953, ‘Cosmic-Ray Neutron Production in Elements as a Function of Latitude and Altitude’, Phys. Rev. 90, 44.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Baldwin, H. W., and Uretz, R. B.: 1951, ‘Nuclear Bursts Produced in the Low Energy Nucleonic Component of the Cosmic Radiation’, Phys. Rev. 84, 332.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Firor, J., Fonger, W. H., and Treiman, S. B.: 1953a, Recueil des Travaux de L’Observatoire du Pic-du-Midi,Bagnères de Bigorre (France), 2–4.

    Google Scholar 

  • Simpson, J. A., Fonger, W., and Treiman, S. B.: 1953b, ‘Cosmic Radiation Intensity-Time Variations and Their Origin, I. Neutron Intensity Variation Method and Meteorological Factors’, Phys. Rev. 90, 934.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Babcock, H. W., and Babcock, H. D.: 1955, ‘Association of a “Unipolar” Magnetic egion on the Sun With Changes of Primary Cosmic-Ray Intensity’, Phys.Rev. 98, 1402.

    Article  ADS  Google Scholar 

  • Treiman, S. B.: 1952, ‘Analysis of the Nucleonic Component Based on Neutron Latitude Variations’, Phys. Rev. 86, 917–923.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Simpson, J.A. (2000). The Cosmic Ray Nucleonic Component: The Invention and Scientific Uses of the Neutron Monitor. In: Bieber, J.W., Eroshenko, E., Evenson, P., Flückiger, E.O., Kallenbach, R. (eds) Cosmic Rays and Earth. Space Sciences Series of ISSI, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1187-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1187-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5615-3

  • Online ISBN: 978-94-017-1187-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics