Skip to main content

Neutron Monitor Design Improvements

  • Conference paper
  • 376 Accesses

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 10))

Abstract

The original design by J. A. Simpson of the neutron monitor enabled continuous monitoring of the primary cosmic-ray flux by ground-based recordings of the nucleonic component with only a rather simple correction for atmospheric effects. Simpson (1957) extended the original pile to the 12 counter IGY neutron monitor which was deployed in a world wide network during the International Geophysical Year 1957/8. The desirability for monitors with higher counting rates became evident soon afterwards. Subsequently the NM64 super neutron monitor was designed by H. Carmichael for deployment in time for the International Quiet Sun Year 1964. Using unusually large 10BF3 proportional counters made at Chalk River, Hatton and Carmichael (1964) studied comprehensively the experimental design of the NM64. Consequently the efficiency of neutron counters to record evaporation neutrons produced in the lead of a monitor increased from 1.9% for the IGY to 5.7% for the NM64, an increase of 3.3 times the counting rate per unit area of lead producer. During the years much attention was given to the neutron multiplicity spectrum in neutron monitors. This spectrum is related to the energy spectrum of the nucleonic component incident on the neutron monitor, but is only weakly dependent on the spectrum of galactic cosmic rays at the top of the atmosphere. Contrary to galactic cosmic rays, solar flare protons and neutrons are observed predominantly as single counts per interaction, in multiplicity 1, because of the softness of solar flare particle energy spectra. Neutron monitors have also been specially designed to record solar neutrons with increased sensitivity. Newly developed 3He counters with a largely reduced thermal neutron absorption mean free path should lead to improved efficiency in recording primary cosmic radiation. Design criteria are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksanyan, T. M., Dorman, L. I., Yanke, V. G. and Korotkov, V. K.: 1985, ‘Coupling Functions for Lead and Lead-free Neutron Monitors From the Latitude Measurements Performed in 1982 in the Research Station “Academician Kurchatov”’, Proc. 19th Int. Cosmic Ray Conf. (La Jolla) 5, 300–303.

    Google Scholar 

  • Arvela, H., Torsti, J. J., and Valtonen, E.: 1982, ‘A Double Neutron Monitor Applied to Cosmic-ray Multiplicity Studies’, Nucl. Instr. Method 192, 467–474.

    Article  ADS  Google Scholar 

  • Bieber, J. W. and Evenson, P.: 1995, ‘Spaceship Earth — An Optimized Network of Neutron Monitors’, Proc. 24th Int. Cosmic Ray Conf, Rome 4, 1316–1319.

    Google Scholar 

  • Carmichael, H.: 1968, in C. M. Minnis (ed.), Cosmic Rays (Instruments), Annals of the IQSY 1, 178–197.

    Google Scholar 

  • Clem, J. M.: 1999, ‘Atmospheric yield functions and the response to secondary particles of neutron monitors’, Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 7, 317–320.

    Google Scholar 

  • Clem, J. M. and Dorman, L. I.: 2000, ‘Neutron Monitor Response Functions’, Space Sci. Rev., this volume.

    Google Scholar 

  • Debrunner, H. and Flückiger, E. 0.: 1971a, ‘Calculation of the Multiplicity Yield Function of the IGY Neutron Monitor’, Hely. Phys. Acta 44, 241–351.

    Google Scholar 

  • Debrunner, H. and Flückiger, E. O.: 1971b, ‘Calculation of the Multiplicity Yield Function of the NM-64 Neutron Monitor’, Proc. 12th Int. Cosmic Ray Conf., Hobart, Australia 3, 911–916.

    Google Scholar 

  • Debrunner, H., Lockwood, J. A., and Flückiger, E. 0.: 1982, ‘Specific Yield Function S(P) for a Neutron Monitor at Sea Level’, Proc. 8th Europe Cosmic Ray Symp., Rome, preprint.

    Google Scholar 

  • Debrunner, H., Flückiger, E., Chupp, E.L., and Forrest, D. J.: 1983, ‘The Solar Cosmic Ray Neutron Event on June 3, 1982’, Proc. 18th Int. Cosmic Ray Conf, Bangalore 4, 75–78.

    Google Scholar 

  • Debrunner, H., Flückiger, E., and Stein, R: 1989, ‘On the Sensitivity of Neutron Monitors to Solar Neutrons’, Nucl. Instr. Methods A278, 573–575.

    Article  ADS  Google Scholar 

  • Dorman, L. I.: 1970, ‘Coupling and Barometer Coefficients for Measurements of Cosmic Ray Variations at Altitudes of 260–400 mb’, Acta Phys. Acad. Scient. Hung. 29, Suppl. 2, 233–236.

    Google Scholar 

  • Dorman, L. I.: 1974, Cosmic Rays, Variations and Space Explorations, North-Holland, Amsterdam.

    Google Scholar 

  • Dorman, L. I., Villoresi, G., Iucci, N., Parisi, M., and Ptitsyna, N. G.: 1999, ‘Cosmic Ray Survey to Antarctica and Coupling Functions for Neutron Component Near Solar Mininum (1996–1997). 3. Geomagnetic Effects and Coupling Functions’, Proc. 26th Int. Cosmic Ray Conf, Salt Lake City, 7, 382–385.

    Google Scholar 

  • Hatton, C. J.: 1971, ‘The Neutron Monitor’, in J.,G. Wilson and S. A. Wouthuysen (eds.), Progress in Elementary Particle and Cosmic-ray Physics X, North Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Hatton, C. J. and Carmichael, H.: 1964, ‘Experimental Investigation of the NM-64 Neutron Monitor’, Can. J. Phys. 42, 2443–2472.

    Article  ADS  Google Scholar 

  • Hess, W. N., Patterson, H. W., and Wallace, R.: 1959, ‘Cosmic Ray Neutron Energy Spectrum’, Phys. Rev. 116, 445–457.

    Article  ADS  Google Scholar 

  • Hughes, E. B.: 1961, PhD thesis, University of Leeds.

    Google Scholar 

  • Hughes, E. B. and Marsden, P. L.: 1966, ‘Response of a Standard IGY Neutron Monitor’, J. Geophys. Res. 71, 1435–1444.

    Article  ADS  Google Scholar 

  • Iucci, N., Storini, M., Villoresi, G., and Griffiths, W. K.: 1971, ‘Latitude, Altitude and Primary Modulation Effects on the Multiplicity Distribution in the NM-64 Neutron Monitors’, Nuovo Cimento 6B, 111–123.

    Article  Google Scholar 

  • Iucci, N., Signoretti, F., and Villoresi, G.: 1987, ‘A Neutron Monitor for the Detection of Solar Neutron Events’, Proc. Workshop ‘The Possibilities of Investigations of Solar Flare Nature by Integrated Studies of Solar Neutrons Using the Net of Neutron Monitors’, Irkutsk, June 2–3, 1987, Initiator: G. E. Kocharov.

    Google Scholar 

  • Lockwood, J. A., Webber, W. R., and Hsieh, L.: 1974, ‘Solar Flare Proton Rigidity Spectra Deduced From Cosmic Ray Neutron Monitor Observations’, J. Geophys. Res. 79, 4149–4155.

    Article  ADS  Google Scholar 

  • Lumme, M., Nieminen, M., Peltonen, J., Torsti, J. J., Vainikka, E., and Valtonen, E.: 1983a, ‘Multiplicity Response Function of the Double Neutron Monitor at Turku’, Proc. 18th Int. Cosmic Ray Conf., Bangelore 3, 538–541.

    Google Scholar 

  • Lumme, M., Nieminen, M., Peltonen, J., Torsti, J. J., Vainikka, E., and Valtonen, E.: 1983b, ‘Energy Dependence of Forbush Decreases Observed by the Turku Hadron Spectrometer’, Proc. 18th Int. Cosmic Ray Conf (Bangelore) 3, 237–240.

    Google Scholar 

  • Matsubara, Y., et al.: 1995, ‘Detection Efficiency of the First Solar Neutron Telescope at Norikura’, Proc. 25th Int. Cosmic Ray Conf, Durban 1,57–60.

    Google Scholar 

  • Mischke, C. F. W., Stoker, P. H., and Duvenage, J.: 1973, ‘The Neutron Moderated Detector and the Determination of Rigidity Dependence of Protons From the 1/2 September 1971 Solar Flare’, Proc. 13th Int. Cosmic Ray Conf. (Denver) 2, 1570–1575.

    ADS  Google Scholar 

  • Muraki, Y., et al.: 1995, ‘The 64 m2 Solar neutron telescope at Norikura’, Proc. 25th Int. Cosmic Ray Conf, Durban 1, 53–56.

    Google Scholar 

  • Nobles, R. A., Alber, R. A., Newkirk, L. L., Walt, M., and Wolfson, C. J.: 1969a, ‘White Mountain Cosmic Ray Neutron Multiplicity Monitor’, Nucl. Instr. Method 70, 45.

    Article  ADS  Google Scholar 

  • Nobles, R. A., Hughes, E. B., and Wolfson, C. J.: 1969b, ‘Emperical Response Functions for a Neutron Multiplicity Monitor’, J. Geophys. Res. 74, 6459–6470.

    Article  ADS  Google Scholar 

  • Potgieter, M. S., Raubenheimer, B. C., Stoker, P. H., and van der Walt, A. J.: ‘Modulation of Cosmic Rays During Solar Minimum. 2. Cosmic Ray Latitude Distribution at sea Level During 1976’, 1980, S. Afr. J. Phys. 3, 77–89.

    Google Scholar 

  • Pyle, R., Evenson, P., Bieber, J. W., Clem, J. W., Humble, J. E., and Duldig, M. L.: 1999, ‘The Use of 3He tubes in a Neutron Monitor Latitude Survey’, Proc. 26th Int. Cosmic Ray Conf, Salt Lake City, 7, 386–389.

    Google Scholar 

  • Raubenheimer, B. C., Fltickiger, E., Mischke, C.F.W., and Potgieter, M. S.: 1980, ‘Comparison Between the Experimental and Theoretical Responses of Neutron Monitors’, S. Afr. J. Phys. 3, 2935.

    Google Scholar 

  • Shibata, S., et al.: 1997, ‘Calibration of Neutron Monitor Using an Accelerator’, Proc. 25th Int. Cosmic Ray Conf. (Durban) 1,45–48.

    Google Scholar 

  • Shibata, S., et al.: 1999, ‘Calibration of Neutron Monitor Using Accelerator Neutron Beam’, Proc. 26th Int. Cosmic Ray Conf, Salt Lake City 7, 313–316.

    Google Scholar 

  • Simpson, J.,A.: 1948, ‘The Latitude Dependence of Neutron Densities in the Atmosphere as a Function of Altitude’, Phys. Rev 73, 1389–1391.

    Article  ADS  Google Scholar 

  • Simpson, J. A. and Uretz, R. B.: 1949, ‘On the Latitude Dependence of Nuclear Integrations and Neutrons at 30,000 Feet’, Phys. Rev. 76, 569–570.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Fonger, W., and Treiman, S. B.: 1953, ‘Cosmic Radiation Intensity-time Variation and Their Origin. I. Neutron Intensity Variation Method and Meteorological Factors’, Phys. Rev. 90, 934–950.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 1957, Ann. Intern. Geophys. Yr. 4, 351.

    Google Scholar 

  • Steljes, J. F. and Carmichael, H.: 1961, Solar Geophysical Data, Part B, CRPL-F 204, 205.

    Google Scholar 

  • Stoker, P. H.: 1981, ‘Primary Spectral Variations of Cosmic Rays Above 1 GV’, Proc. 17th Int. Cosmic Ray Conf, Paris 3, 193–196.

    Google Scholar 

  • Stoker, P. H.: 1994, ‘Relativistic Solar Proton Events’, Space Sci. Rev. 73, 327–385.

    Article  ADS  Google Scholar 

  • Stoker, P. H., Van der Walt, A. J., and Potgieter, M. S.: 1980, ‘Modulation of Cosmic Rays During Solar Minimum. 1. Cosmic Ray Intensity Survey at Sea-level During 1976: Experimental Details’, S. Aft J. Phys. 3, 73–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stoker, P.H., Dorman, L.I., Clem, J.M. (2000). Neutron Monitor Design Improvements. In: Bieber, J.W., Eroshenko, E., Evenson, P., Flückiger, E.O., Kallenbach, R. (eds) Cosmic Rays and Earth. Space Sciences Series of ISSI, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1187-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1187-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5615-3

  • Online ISBN: 978-94-017-1187-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics