Skip to main content

Integration of Neutron Monitor Data with Spacecraft Observations: A Historical Perspective

  • Conference paper
Cosmic Rays and Earth

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 10))

Abstract

Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results.

With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data.

Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles.

In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to he even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia, H. S. and Dessler, A. J.: 1962, ‘Diurnal Variation of Cosmic Radiation Intensity Produced by a Solar Wind’, Planetary Space Sci. 9, 195.

    Article  ADS  Google Scholar 

  • Anderson, K. A.: 1958, ‘Ionizing Radiation Associated with a Solar Radio Noise Storm’, Phys. Rev. Lett. 1, 335.

    Article  ADS  Google Scholar 

  • Barnes, C. W. and Simpson J. A.: 1976, ‘Evidence for Interplanetary Acceleration of Nucleons in Corotating Interaction Regions’, Astrophys. J. 210, L91.

    Article  ADS  Google Scholar 

  • Bartley, W. C., Bukata, R. P., McCracken, K. G., and Rao, U. R.: 1966, Anisotropic Cosmic Radiation Fluxes of Solar Origin’, J. Geophys. Res. 71, 3297.

    Article  ADS  Google Scholar 

  • Bierman, L.: 1957, ‘Solar Corpuscular Radiation and the Interplanetary Gas’, Observatory, 109.

    Google Scholar 

  • Bryant, D. A., Cline, T. L., Desai, U. D., and McDonald, F. B.: 1963, ‘New Evidence for Long Lived Solar Streams in Interplanetary Space’, Phys. Rev. Lett. 11, 144.

    Article  ADS  Google Scholar 

  • Bryant, D. A., Cline, T. C., Desai, U. D., and McDonald, F. B.: 1965, ‘Studies of Solar Protons With Explorer XII and XIV’, Astrophys. J. 141, 478.

    Article  ADS  Google Scholar 

  • Carmichael, H: 1964, ‘Cosmic Rays’, in IQSY Instruction Manual No. 7 (IQSY Secretariat, London) reprinted as Chapt. 13, Ann. IQSY Vol. 1 (MIT Press, Cambridge, MA, 1969 ) 1, 178.

    Google Scholar 

  • Carrington, R. C.: 1860, ‘Description of a Singular Appearance Seen on the Sun on September 1, 1859’, Monthly Notices Roy. Astron. Soc. 20, 13.

    ADS  Google Scholar 

  • Chapman, S.: 1957, Smithsonian Cont. Astrophysics 2, 1.

    Article  ADS  Google Scholar 

  • Coleman, Jr., P. J., Sonett, C. P., Judge, D. L., and Smith, E. J.: 1960, ‘Some Preliminary Results of the Pioneer 5 Magnetometer Experiment’, J. Geophys. Res. 65, 1856.

    Article  ADS  Google Scholar 

  • Davis, L.: 1955, L.: 1955, ‘Interplanetary Magnetic Fields and Cosmic Rays’, Phys. Rev. 100, 1440.

    Google Scholar 

  • Dorman, L.I.: 1957, ‘Var. Kosm Luchei’, in: Cosmic Ray Variations, State Publishing House, Moscow.

    Google Scholar 

  • Fan, C. Y., Meyer, P., and Simpson, J. A.: 1960, ‘Rapid Reduction of Cosmic-Radiation Intensity Measured in Interplanetary Space’, Phys. Rev. Lett. 5, 269.

    Article  ADS  Google Scholar 

  • Fan, C. Y., Lamport, J. E., Simpson, J. A., and Smith, P. R.: 1966, ‘Anisotropy and Fluctuations of Solar Proton Fluxes of Energies 0.6–100 MeV Measured on the Pioneer 6 Space Probe’, J. Geophys. Res. 71, 3297.

    Article  Google Scholar 

  • Fichtel, C. and Guss, D.: 1961, ‘Heavy Nuclei in Solar Cosmic Rays’, Phys. Rev. Lett. 6, 495.

    Article  ADS  Google Scholar 

  • Firor, J.: 1954, ‘Cosmic Radiation Intensity-Time Variations and Their Origin. IV. Increases Associated with Solar Flares’, Phys. Rev. 94, 1017.

    Article  ADS  Google Scholar 

  • Fisk, L. A. and Axford, W. I.: 1969, ‘Solar Modulation of Galactic Cosmic Rays’, 1, J. Geophys. Res. 74, 4973.

    Google Scholar 

  • Fisk, L. A.: 1971, ‘Solar Modulation of Galactic Cosmic Rays’, J. Geophys. Res. 76, 221.

    Article  ADS  Google Scholar 

  • Fonger, W. H.: 1953, ‘Cosmic Radiation Intensity-Time Variations and Their Origin. 11 Energy Dependence of 27-Day Variations’, Phys. Rev. 91, 351.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1937, ‘On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm’, Phys. Rev. 51, 1108.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1946, ‘Three Unusual Cosmic Ray Increases Possibly Due to Charged Particles From the Sun’, Phys. Rev. 70, 771.

    Article  ADS  Google Scholar 

  • Forbush, S. E.: 1954, ‘World-Wide Cosmic-Ray Variations 1937–1952’, J. Geophys. Res. 59, 525.

    Article  ADS  Google Scholar 

  • Gleeson, L. J. and Axford, W. I.: 1968, ‘Solar Modulation of Galactic Cosmic Rays’, Astrophys. J. 154, 1011.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, ‘The Solar Flare Myth’, J. Geophys. Res. 98, 18937.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., and Ross, C. L.: 1974, ‘Mass Ejections from the Sun: A View from Skylab’, J. Geophys. Res. 79, 4581.

    Google Scholar 

  • Gringauz, K. I., Bezrukikh, V. D., Ozerov, and Rybchinskii, V. D.: 1960, ‘The Study of Interplanetary Ionized Gas, High Energy Electrons and Corpuscular Radiation of the Sun, Employing Three Electrode Charged Particle Traps on the Second Soviet Space Rocket’, Dokl. Akad Nauk SSR 131, 1301.

    Google Scholar 

  • Harrison, R. A.: 1986, ‘Solar Coronal Mass Ejections and Flares’, Astron. Astrophys. 162, 283.

    ADS  Google Scholar 

  • Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, New York. Hundhausen, A. J.: 1973a, ‘Nonlinear Model of High-Speed Solar Wind Streams’, J. Geophys. Res. 78, 1528.

    ADS  Google Scholar 

  • Hundhausen, A. J.: 1973b, ‘Evolution of Large-Scale Solar Wind Structures Beyond 1 AU’, J. Geophys. Res. 78, 2035.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. and Gosling, J. T.: 1976, ‘Solar Wind Structure at Large Heliocentric Distances: An Interpretation of Pioneer 10 Observations’, J. Geophys. Res. 81, 1436.

    Article  ADS  Google Scholar 

  • Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973, ‘A Coronal Hole and its Identification as the Source of a High Velocity Solar Wind Stream’, Solar Phys. 29, 505.

    Article  ADS  Google Scholar 

  • Krimigis, S.M. and VanAllen, J. A.: 1966, ‘Observation of -500 keV Protons in Space With Mariner IV’, Phys. Rev. Lett. 16, 419.

    Article  ADS  Google Scholar 

  • Lockwood, J.A.: 1960, ‘On the Long-Term Variation in the Cosmic Radiation’, J. Geophys. Res. 65, 19.

    Article  ADS  Google Scholar 

  • Low, B. C.: 1984, ‘Self-Similar Magnetohydrodynamics IV, The Physics of Coronal Transients’, Astrophys. J. 281, 392.

    Article  ADS  Google Scholar 

  • Low, B. C.: 1996, ‘Solar Activity and the Corona’, Solar Phys. 167, 217.

    Article  ADS  Google Scholar 

  • McCracken, K. G.: 1962a, ‘The Cosmic Ray Flare Effect 1. Some New Methods of Analysis’, J. Geophys. Res. 67, 423.

    Article  ADS  Google Scholar 

  • McCracken, K. G.: 1962b, ‘The Flare Effects of May 4, November 12, and November 15, 1960’, J. Geophys. Res. 67, 435.

    Article  ADS  Google Scholar 

  • McCracken, K. G.: 1962c, ‘Deductions Regarding the Interplanetary Magnetic Field’, J. Geophys. Res. 67, 447.

    Article  ADS  Google Scholar 

  • McDonald, F. B. and Desai, U. D.: 1971, ‘Recurrent Solar Cosmic-Ray Events and Solar M Regions’, J. Geophys. Res. 76, 808.

    Article  ADS  Google Scholar 

  • McCracken, K. G. and Palmeira, R. A. R.: 1960, ‘Comparison of Solar Cosmic Ray Injection Including July 17, 1959 and May 4, 1960’, J. Geophys. Res. 65, 2673.

    Article  ADS  Google Scholar 

  • McDonald, F. B., Teegarden, B. J., Trainor, J. H., vonRosenvinge, T. T., and Webber, W. R.: 1975, ‘The Interplanetary Acceleration of Energetic Nucleons’, Astrophys. J. 203, L 149.

    Google Scholar 

  • Meyer, P. and Simpson, J. A.: 1955, ‘Changes in the Low-Energy Particle Cutoff and Primary Spectrum of Cosmic Radiation’, Phys. Rev. 99, 1517.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E. N., and Simpson, J. A.: 1956, ‘Solar Cosmic Rays of February, 1956 and Their Propagation Through Interplanetary Space’, Phys. Rev. 104, 768.

    Article  ADS  Google Scholar 

  • Morrison, P.: 1956, ‘Solar Origin of Cosmic Ray Time Variation’, Phys. Rev. 101, 1397.

    Article  ADS  Google Scholar 

  • Neher, H. V. and Stern, E. A.: 1955, “‘Knee” of the Cosmic-Ray Latitude Curve’, Phys. Rev. 98, 845.

    Article  ADS  Google Scholar 

  • Ness, N. F.: 1966, ‘Observed Properties of the Interplanetary Plasma’, Ann. Rev. Astron. Astrophys. (Annual Reviews, Palo Alto, CA) 6, 79.

    Google Scholar 

  • Ness, N. F., Scearce, C. S., and Seek, J. B.: 1964, ‘Initial Results of the IMP 1 Magnetic Field Experiment’, J. Geophys. Res. 69, 3571.

    Article  ADS  Google Scholar 

  • Neugebauer, M. and Snyder, C. W.: 1962, ‘The Mariner II Preliminary Observations, Solar Plasma Experiment’, Science 138, 1095.

    Article  ADS  Google Scholar 

  • O’Gallagher, J. J. and Simpson, J. A.: 1966, ‘Anisotropic Propagation of Solar Protons Deduced From Simultaneous Observations by Earth Satellites and the Mariner IV Space Probe’, Phys. Rev. Lett. 16, 1212.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1958, ‘Dynamics of the Interplanetary Gas and Magnetic Fields’, Astrophys. J. 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1961, ‘Sudden Expansion of the Corona Following a Large Solar Flare and the Attendant Magnetic Field and Cosmic Ray Effects’, Astrophys. J. 133, 1014.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1965, ‘The Passage of Energetic Charged Particles Through Interplanetary Space’, Planetary Space Sci. 13, 9.

    Article  ADS  Google Scholar 

  • Phillips, J. L., Bame, S. J. Barnes, A., Barraclough, B. L., Feldman, W. C., Goldstein, B. E., Gosling, J.T., Hoogeveen, G. W., McComas, D.J., Neugebauer, M., and Suess, S.T.: 1995, ‘ULYSSES Solar Wind Plasma Observations From Pole to Pole’, Geophys. Res. Lett. 22 3,301–3,304.

    Google Scholar 

  • Quenby, J. J. and Webber, W. R.: 1959, ‘Cosmic Ray Cut-Off Rigidities and the Earth’s Magnetic Field’, Phil. Mag. 4, 90.

    Article  ADS  Google Scholar 

  • Rao, U. R., McCracken, K. G., and Venkatesan, D. J.: 1963, ‘Asymptotic Cones of Acceptance and

    Google Scholar 

  • Their Use in the Study of the Daily Variation of Cosmic Rays’, J. Geophys. Res. 68 345.

    Google Scholar 

  • Reames, D. V.: 1995, ‘Coronal Abundances Determined from Energetic Particles’, Adv. Space Res. 15, (7)41.

    Google Scholar 

  • Rothwell, P. and Mcllwain, C. E. 1959, Nature 184, 138.

    Article  ADS  Google Scholar 

  • Shea, M. A. and Smart, D. F.: 1993, in C. E. Swenberg, ‘History of Energetic Solar Protons for the Past Three Solar Cycles Including Cycle 22 Update’, Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Part B, Plenum Press, New York, p. 37.

    Chapter  Google Scholar 

  • Shklovskii, I. S., Moroz, V.I., and Kurst, V. G.: 1960, Astron. Zh 37, 931.

    ADS  Google Scholar 

  • Simpson, J. A.: 1954, ‘Cosmic-Radiation Intensity-Time Variations and Their Origin. III. The Origin of 27-Day Variations’, Phys. Rev. 94, 426.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 2000, ‘The Cosmic Ray Nucleonic Component: The Invention and Scientific Uses of the Neutron Monitor’, Space Sci. Rev., this volume.

    Google Scholar 

  • Simpson, J. A., Gonger, W., and Treiman, S. B.: 1953, ‘Cosmic Radiation Intensity-Time Variations and Their Origin I. Neutron Intensity Variation Method and Meteorological Factors’, Phys. Rev. 90, 934.

    Article  ADS  Google Scholar 

  • Smith, E.J. and Wolfe, J.H.: 1976, ‘Observations of Interaction Regions and Co-Rotating Shocks between One and Five AU: Pioneer 10 and 1 l’, Geophys. Res. Lett. 3, 137.

    Google Scholar 

  • Snyder, C. W., Neugebauer, M., and Rao, V. R.: 1963, ‘The Solar Wind Velocity and It’s Correlation With Cosmic Ray Variations and With Solar Wind and Geomagnetic Activity’, J. Geophys. Res.

    Google Scholar 

  • Steljes, J. F., Carmichael, H., and McCracken, K. G.: 1961, ‘Characteristics and Find Structure of the Large Cosmic Ray Fluctuations in November 1960’,.1. Geophys. Res. 66, 1363.

    Google Scholar 

  • Tousey, R.: 1973, ‘The Solar Corona’, Adv. Space Res. 13, 713.

    Google Scholar 

  • Van Hollebeke, M.A.I., McDonald, F. B., Trainor, J. H., and von Rosenvinge, T. T.: 1978, ‘The Radial Variation of Corotating Energetic Particle Streams in the Inner and Outer Solar System’, J. Geophys. Res. 83, 723–4731.

    Google Scholar 

  • Webber, W. R. and Quenby, J. J.: 1959, ‘On the Derivation of Cosmic Ray Specific Yield Functions’, Phil. Mag. 4, 654.

    Article  ADS  Google Scholar 

  • Zirker, J. B. (ed.): 1977, Coronal Holes and High Speed Wind Streams, Skylab Solar Workshop, Colorado University Press, Boulder, CO, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McDonald, F.B. (2000). Integration of Neutron Monitor Data with Spacecraft Observations: A Historical Perspective. In: Bieber, J.W., Eroshenko, E., Evenson, P., Flückiger, E.O., Kallenbach, R. (eds) Cosmic Rays and Earth. Space Sciences Series of ISSI, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1187-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1187-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5615-3

  • Online ISBN: 978-94-017-1187-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics