Skip to main content

Mycorrhiza: ecological implications of plant interactions

  • Chapter
Concepts in Mycorrhizal Research

Part of the book series: Handbook of Vegetation Science ((HAVS,volume 19/2))

Abstract

Mycorrhizal researchers have emphasized autecological studies. Plants benefit from the mycorrhizal condition by improved nutrient uptake, water relations and enhanced plant survival due to a decrease in environmentally-induced stress. Various mechanisms account for these responses including the advantageous spatial distribution of hyphae, differing uptake kinetics and access to nutrients less available to plants alone. On a broader scale, these mycorrhizal effects also alter plant-plant interactions. Here, we address the role of mycorrhiza in mediating plant competition, as well as beneficial plant-plant interactions, which both have potential significance at the community level. Herbivores and edaphic factors unrelated to nutrition, including allelochemicals and other microorganisms, may affect the outcome of these interactions. The examples we present demonstrate the complex nature of the synecological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuzinadah, R.A. and Read, D.J. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist, 103: 481–493.

    CAS  Google Scholar 

  2. Abuzinadah, R.A. and Read, D.J. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea, and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytologist, 103: 506–514.

    Google Scholar 

  3. Abuzinadah, R.A. and Read, D.J. 1989. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytologist, 112: 61–68.

    CAS  Google Scholar 

  4. Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge University Press, New York.

    Google Scholar 

  5. Allen, M.F., Allen, E.B. and Friese, C.F. 1989. Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 111: 45–49.

    Google Scholar 

  6. Amaranthus, M.P. and Perry, D.A. 1994. The functioning of ectomycorrhizal fungi in the field: Linkages in space and time. Plant and Soil, 159: 133–140.

    Google Scholar 

  7. Ames, R.N., Reid, C.P.P., Porter, L.K. and Cambardella, C. 1983. Hyphal uptake and transport of nitrogen from two 75N-labeled sources by Glomus mosseae, a vesiculararbuscular mycorrhizal fungus. New Phytologist, 95: 381–396.

    Google Scholar 

  8. Antibus, R.K., Sinsabaugh, R.L. and Linkins, A.E. 1992. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Canadian Journal of Botany, 70: 794–801.

    CAS  Google Scholar 

  9. Arp, A.P. and Strucel, I. 1989. Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminum. Water, Air, and Soil Pollution, 44: 57–70.

    CAS  Google Scholar 

  10. Augé, R.M., Schekel, K.A. and Wample, R.L. 1986. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytologist, 103: 107–116.

    Google Scholar 

  11. Baar, J., Ozinga, W.A., Sweers, I.L. and Kuyper, T.W. 1994. Stimulatory and inhibitory effects of needle litter and grass extracts on the growth of some ectomycorrhizal fungi. Soil Biology and Biochemistry, 26: 1073–1079.

    Google Scholar 

  12. Bââth, E. and Hayman, D.S. 1984. Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant and Soil, 77: 373–376.

    Google Scholar 

  13. Bajwa, R., Abuarghub, S. and Read, D.J. 1985. The biology of mycorrhiza in the Ericaceae. X. The utilization of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytologist, 101: 469–486.

    CAS  Google Scholar 

  14. Bajwa, R. and Read, D.J. 1985. The biology of mycorrhiza in the Ericaceae IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and nonmycorrhizal plants. New Phytologist, 101: 459–467.

    CAS  Google Scholar 

  15. Barber, S.A. 1995. Soil Nutrient Availability: A Mechanistic Approach. John Wiley & Sons, Inc.

    Google Scholar 

  16. Barbosa, P., Krischik, V.A. and Jones, C.G. (eds.) 1991. Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, Inc.

    Google Scholar 

  17. Barea, J.M., Azcón, R. and Azcón-Aguilar, C. 1989. Time course of N2-fixation (15N) in the field by clover growing alone or in mixture with ryegrass to improve pasture productivity, and inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytologist, 112: 399–404.

    Google Scholar 

  18. Barker, G.M. 1987. Mycorrhizal infection influences Acremonium-induced resistance to Argentine stem weevil in ryegrass. Proceedings of the New Zealand Weed Pest Control Conference, 199–203.

    Google Scholar 

  19. Baylis, G.T. 1975. The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In ‘Endomycorrhizas’ (eds. Sanders, F.E., Mosse, B. and Tinker, P.B.) Academic Press, New York, NY, pp. 373–389.

    Google Scholar 

  20. Begon, M., Harper, J.L. and Townsend, C.R. 1986. Ecology: Individuals, Populations and Communities. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  21. Bertness, M.D. and Callaway, R. 1994. Positive interactions in communities. Trends in Ecology and Evolution, 9: 191–193.

    PubMed  CAS  Google Scholar 

  22. Bethlenfalvay, G.J., Brown, M.S., Ames, R.N. and Thomas, R.S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiologia Plantarum, 72: 565–571.

    CAS  Google Scholar 

  23. Bethlenfalvay, G.J., Reyes-Solis, M.G., Camel, S.B. and Ferrera-Cerrato, R. 1991. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiologia Plantarum, 82: 423–432.

    CAS  Google Scholar 

  24. Bever, J.D. 1994. Feedback between plants and their soil communities in an old field community. Ecology, 75: 1965–1977.

    Google Scholar 

  25. Blum, U. and Shafer, S.R. 1988. Microbial populations and phenolic acids in soil. Soil Biology and Biochemistry, 20: 793–800.

    CAS  Google Scholar 

  26. Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134: 189–207.

    CAS  Google Scholar 

  27. Bolland, M.D.A. and Paynter, B.H. 1992. Increasing phosphorus concentration in seed of annual pasture legume species increases herbage and seed yields. Plant and Soil, 125: 197–205.

    Google Scholar 

  28. Boufalis, A. and Pellissier, F. 1994. Allelopathic effects of phenolic mixtures on respiration of two spruce mycorrhizal fungi. Journal of Chemical Ecology, 20: 2283–2289.

    CAS  Google Scholar 

  29. Bradley, R.D., Burt, A.J. and Read, D.J. 1982. The biology of mycorrhizae in the Ericaceae. VIII.The role of mycorrhizal infection in heavy metal resistance. New Phytologist, 91: 197–209.

    CAS  Google Scholar 

  30. Brown, M.S., Ferrera-Cenato, R. and Bethlenfalvay, G.J. 1992. Mycorrhiza-mediated nutrient distribution between associated soybean and corn plants evaluated by the diagnosis and recommendation integrated system (DRIS). Symbiosis, 12: 83–94.

    Google Scholar 

  31. Brundrett, M.C. 1991. Mycorrhizas in natural ecosystems. In ‘Advances in Ecological Research’ vol. 21 (eds. Begon, M., Fitter, A.H. and MacFadyen, A.) Academic Press, New York, pp. 171–213.

    Google Scholar 

  32. Burgess, T., Dell, B. and Malajczuk, N. 1994. Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W Hill ex Maiden. New Phytologist, 127: 731–739.

    Google Scholar 

  33. Campbell, B.D. and Grime, J.P. 1989. A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment. New Phytologist, 112: 261–267.

    Google Scholar 

  34. Campbell, B.D., Grime, J.P. and Mackey, J.M.L. 1991. A trade-off between scale and precision in resource foraging. Oecologia, 87: 532–538.

    Google Scholar 

  35. Campbell, B.D., Grime, J.P., Mackey, J.M.L. and Jalili, A. 1991. The quest for a mechanistic understanding of resource competition in plant communities: The role of experiments. Functional Ecology, 5: 241–253.

    Google Scholar 

  36. Carey, P.D., Fitter, A.H. and Watkinson, A.R. 1992. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia, 90: 550–555.

    Google Scholar 

  37. Chenu, C. 1993. Clay-or sand-polysaccharide associations as models for the interface betweeen micro-organisms and soil: Water related properties and microstructure. Geoderma, 56: 143–156.

    CAS  Google Scholar 

  38. Chu-Chou, M., Guo, B., An, Z.Q., Hendrix, J.W., Ferriss, R.S., Siegel, M.R., Dougherty, C.T. and Burrus, P.B. 1992. Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biology and Biochemistry, 24: 633–637.

    Google Scholar 

  39. Clay, K. 1991. Fungal endophytes, grasses and herbivores. In ‘Microbial Mediation of Plant-Herbivore Interactions’ (eds. Barbosa, P., Krischik, V.A. and Jones, C.G.) John Wiley & Sons, Inc. New York, N.Y. pp. 199–226.

    Google Scholar 

  40. Clay, K. 1992. Mycophyllas and Mycorrhizas. In ‘Mycorrhizas and Ecosystems’ C.A.B. International, Wallingford, U.K.. pp. 13–25.

    Google Scholar 

  41. Clay, K., Marks, S. and Cheplick, G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology, 74: 1767–1777.

    Google Scholar 

  42. Colpaert, J.V. and Van Assche, J.A. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, 123: 325–333.

    CAS  Google Scholar 

  43. Cress, W.A., Johnson, G.V. and Barton, L.L. 1986. The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. Journal of Plant Nutrition, 9: 547–556.

    Google Scholar 

  44. Cress, W.A., Throneberry, G.O. and Lindsey, D.L. 1979. Kinetics of phosphorus adsorption by mycorrhizal and nonmycorrhizal tomato roots. Plant Physiology, 64: 484–487.

    PubMed  CAS  Google Scholar 

  45. Crush, J.R. 1974. Plant growth responses to vesicular-arbuscular mycorrhizas. VIII. Growth and nodulation of some herbage legumes. New Phytologist, 73: 743–749.

    CAS  Google Scholar 

  46. Cumming, J.R. 1993. Growth and nutrition of nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings under phosphorus limitation. Tree Physiology, 13: 173–187.

    PubMed  CAS  Google Scholar 

  47. Darrah, P.R. 1993. The rhizosphere and plant nutrition–a quantitative approach. Plant and Soil, 156: 1–20.

    Google Scholar 

  48. Davies, F.T., Jr., Potter, J.R. and Linderman, R.G. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development on pepper plants independent of plant size and nutrient content. Journal of Plant Physiology, 139: 289–294.

    Google Scholar 

  49. Deacon, J.W. and Fleming, L.V. 1992. Interactions of ectomycorrhizal fungi. In ‘Mycorrhizal Functioning: An Integrative Plant Fungal Process’ (ed. Allen, M.F.) Chapman and Hall, New York, N.Y. pp. 249–300.

    Google Scholar 

  50. Dehn, B., Bodmer, M. and Schüepp, H. 1990. Influence of herbicides on VA mycorrhizal propagation in soil. Symbiosis, 9: 223–227.

    CAS  Google Scholar 

  51. Denny, H.J. and Wilkins, D.A. 1987. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytologist, 106: 545–553.

    CAS  Google Scholar 

  52. Devries, B.W.L., Jansen, J., Vandobben, H.F. and Kuyper, T.W. 1995. Partial restoration of fungal and plant species diversity by removal of litter and humus layers in stands of Scots pine in the Netherlands. Biodiversity and Conservation, 4: 156–164.

    Google Scholar 

  53. Dodd, J.C. 1994. Approaches to the study of the extraradical mycelium of arbuscular mycorrhizal fungi. In ‘Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems’ (eds. Gianinazzi, S. and Schuepp, H.) Birkhäuser Verlag, Basel, Switzerland, pp. 147–166.

    Google Scholar 

  54. Donnelly, P.K., Entry, J.A. and Crawford, D.L. 1993. Degradation of atrazine and 2,4dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology, 59: 2642–2647.

    PubMed  CAS  Google Scholar 

  55. Dosskey, M.G., Linderman, R.G. and Boersma, L. 1990. Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytologist, 115: 269–274.

    CAS  Google Scholar 

  56. Duchesne, L.C. 1994. Role of ectomycorrhizal fungi in biocontrol. In ‘Mycorrhizae and Plant Health’ (eds. Pfleger, F.L. and Linderman, R.G.) APS Press, St. Paul, MN, pp. 27–45.

    Google Scholar 

  57. Duddridge, J.A., Malibari, A. and Read, D.J. 1980. Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature, 287: 834836.

    Google Scholar 

  58. Dueck, T.A., Visser, R, Ernst, W.H.O. and Schat, H. 1986. Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biology and Biochemistry, 18: 331–334.

    Google Scholar 

  59. Duff, S.M.G., Sarath, G. and Plaxton, W.C. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 90: 791–800.

    CAS  Google Scholar 

  60. Durall, D.M., Marshall, J.D., Jones, M.D., Crawford, R. and Trappe, J.M. 1994. Morphological changes and photosynthate allocation in ageing Hebeloma crustuliniforme (Bull.) Quel. and Laccaria bicolor (Maire) Orton mycorrhizas of Pinus ponderosa Dougl. ex. Laws. New Phytologist, 127: 719–724.

    Google Scholar 

  61. Durall, D.M., Todd, A.W. and Trappe, J.M. 1994. Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytologist, 127: 725–729.

    CAS  Google Scholar 

  62. Eason, W.R. and Newman, E.I. 1990. Rapid cycling of nitrogen and phosphorus from dying roots of Lolium perenne. Oecologia, 82: 432–436.

    Google Scholar 

  63. Eissenstat, D.M., Graham, J.H., Syvertsen, J.P. and Drouillard, D.L. 1993. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Annals of Botany, 71: 1–10.

    Google Scholar 

  64. Eissenstat, D.M. and Newman, E.I. 1990. Seedling establishment near large plants: effects of vesicular-arbuscular mycorrhizas on the intensity of plant competition. Functional Ecology, 4: 95–99.

    Google Scholar 

  65. Faber, B.A., Zasoski, R.J., Munns, D.N. and Shackel, K. 1991. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Canadian Journal of Botany, 69: 87–94.

    Google Scholar 

  66. Fitter, A.H. 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytologist, 79: 119–125.

    CAS  Google Scholar 

  67. Fitter, A.H. and Garbaye, J. 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159: 123–132.

    Google Scholar 

  68. Fox, T.R., Comerford, N.B. and McFee, W.W. 1990. Kinetics of phosphorus release from spodosols: Effects of oxalate and formate. Soil Science Society of America Journal, 54: 1441–1447.

    CAS  Google Scholar 

  69. Francis, R. and Read, D.J. 1994. The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil, 159: 11–25.

    Google Scholar 

  70. Franson, R.L., Hamel, C., Smith, D.L. and Bethlenfalvay, G.J. 1994. Below-ground interactions between a seedling soybean and preestablished soybean plant with and without mycorrhizal fungi. 1. Plant biomass, root growth, and mycorrhizal colonization. Agriculture, Ecosystems and Environment, 49: 131–138.

    Google Scholar 

  71. Frey, B. and Schüepp, H. 1993. A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biology and Biochemistry, 25: 651–658.

    Google Scholar 

  72. Frey, B. and Schüepp, H. 1993. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytologist, 124: 221–230.

    Google Scholar 

  73. Galli, U., Schüepp, H. and Brunold, C. 1994. Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92: 364–368.

    CAS  Google Scholar 

  74. Gange, A.C., Brown, V.K. and Sinclair, G.S. 1993. Vesicular arbuscular mycorrhizal fungi–a determinant of plant community structure in early succession. Functional Ecology, 7: 616–622.

    Google Scholar 

  75. Gange, A.C., Brown, V.K. and Sinclair, G.S. 1994. Reduction of black vine weevil larval growth by vesicular-arbuscular mycorrhizal infection. Entomologia Experimentalis et Applicata, 70: 115–119.

    Google Scholar 

  76. Gange, A.C. and West, H.M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist, 128: 79–87.

    Google Scholar 

  77. Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist, 128: 197–210.

    Google Scholar 

  78. Gehring, C.A. and Whitham, T.G. 1994. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution, 9: 251–255.

    PubMed  CAS  Google Scholar 

  79. George, E., Häussler, K.U., Vetterlein, D., Gorgus, E. and Marschner, H. 1992. Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany, 70: 2130–2137.

    Google Scholar 

  80. Gildon, A. and Tinker, P.B. 1983. Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants I. The effects of heavy metal on the development of vesicular-arbuscular mycorrhizas. New Phytologist, 95: 247–261.

    CAS  Google Scholar 

  81. Giltrap, N.J. 1982. Production of polyphenol oxidases by ectomycorrhizal fungi with special reference to Lactarius spp. Transactions of the British Mycological Society, 78: 75–81.

    CAS  Google Scholar 

  82. Graham, J.H. and Eissenstat, D.M. 1994. Host genotype and the formation and function of VA mycorrhizae. Plant and Soil, 159: 179–185.

    Google Scholar 

  83. Graham, J.H., Eissenstat, D.M. and Drouillard, D.L. 1991. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Functional Ecology, 5: 773–779.

    Google Scholar 

  84. Griffioen, W.A.J., Ietswaart, J.H. and Ernst, W.H.O. 1994. Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant and Soil, 158: 83–89.

    CAS  Google Scholar 

  85. Griffiths, R.P., Baham, J.E. and Caldwell, B.A. 1994. Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry, 26: 331–337.

    CAS  Google Scholar 

  86. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, Inc. London, U.K.

    Google Scholar 

  87. Grime, J.P., Mackey, J.M.L., Hillier, S.H. and Read, D.J. 1987. Floristic diversity in a model system using experimental microcosms. Nature, 328: 420–422.

    Google Scholar 

  88. Guo, B.Z., Hendrix, J.W., An, Z.Q. and Ferriss, R.S. 1992. Role of Acremonium endophyte of fescue on inhibition of colonization and reproduction of mycorrhizal fungi. Mycologia, 84: 882–885.

    Google Scholar 

  89. Hamel, C., Morin, F., Fortin, A.. Granger, R.L. and Smith, D.L. 1994. Mycorrhizal colonization increases herbicide toxicity in apple. Journal of the American Society for Horticultural Sciences, 119: 1255–1260.

    CAS  Google Scholar 

  90. Hamel, C. and Smith, D.L. 1991. Interspecific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biology and Biochemistry, 23: 661–665.

    Google Scholar 

  91. Harley, J.L. and Smith, S.E. 1983. Mycorrhizal Symbiosis. Academic Press, New York, New York.

    Google Scholar 

  92. Hartnett, D.C., Hetrick, B.A.D., Wilson, G.W.T. and Gibson, D.J. 1993. Mycorrhizal influence on intra-and interspecific neighbour interactions among co-occurring prairie grasses. Journal of Ecology, 81: 787–795.

    Google Scholar 

  93. Hartnett, D.C., Samenus, R.J., Fischer, L.E. and Hetrick, B.A.D. 1994. Plant demographic responses to mycorrhizal symbiosis in tallgrass prairie. Oecologia, 99: 21–26.

    Google Scholar 

  94. Haselwandter, K., Bobleter, O. and Read, D.J. 1990. Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Archives für Mikrobiologie, 153: 352–354.

    CAS  Google Scholar 

  95. Hetrick, B.A.D., Wilson, G.W.T. and Cox, T.S. 1992. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Canadian Journal of Botany, 70: 20322040.

    Google Scholar 

  96. Hetrick, B.A.D., Wilson, G.W.T. and Hartnett, D.C. 1989. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 67: 2608–2615.

    Google Scholar 

  97. Hirrel, M.C. and Gerdemann, J.W. 1979. Enhanced carbon transfer between onions infected with a vesicular-arbuscular mycorrhizal fungus. New Phytologist, 83: 731–738.

    CAS  Google Scholar 

  98. Horsley, S.B. 1987. Allelopathic interference with regeneration of the Allegheny hardwood forest. In Allelochemicals: Role in Agriculture and Forestry’ (ed. Waller, G.R.) American Chemical Society, Washington, D.C. pp. 205–212.

    Google Scholar 

  99. Ikram, A., Jensen, E.S. and Jakobsen, I. 1994. No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biology and Biochemistry, 26: 1541–1547.

    CAS  Google Scholar 

  100. Itoh, S. and Barber, S.A. 1983. A numerical solution of whole plant nutrient uptake for soil-root systems with root hairs. Plant and Soil, 70: 403–413.

    CAS  Google Scholar 

  101. Jakobsen, I., Abbott, L.K. and Robson, A.D. 1992. External hyphae of vesiculararbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120: 371–380.

    CAS  Google Scholar 

  102. Jayachandran, K., Schwab, A.P. and Hetrick, B.A.D. 1992. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 24: 897–903.

    CAS  Google Scholar 

  103. Johansen, A., Jakobsen, I. and Jensen, E.S. 1993. External hyphae of vesiculararbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 37P and 15N. New Phytologist, 124: 61–68.

    CAS  Google Scholar 

  104. Johnson, N.C., Copeland, P.J., Crookston, R.K. and Pfleger, F.L. 1992. Mycorrhizae: possible explanation for yield decline associated with continuous corn and soybean. Agronomy Journal, 84: 387–390.

    Google Scholar 

  105. Johnson, N.C., Tilman, D. and Wedin, D. 1992. Plant and soil controls on mycorrhizal fungal communities. Ecology, 73: 2034–2042.

    Google Scholar 

  106. Joner, E.J. and Jakobsen, I. 1994. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil. Plant and Soil, 163: 203–209.

    CAS  Google Scholar 

  107. Jones, C.G. and Last, F.T. 1991. Ectomycorrhizae and trees–implications for aboveground herbivory. In ‘Microbial Mediation of Plant-Herbivore Interactions’ (eds. Barbosa, P., Krischik, V.A. and Jones, C.G.) John Wiley & Sons, Inc. New York, N.Y. pp. 65–103.

    Google Scholar 

  108. Jungk, A., Seeling, B. and Gerke, J. 1993. Mobilization of different phosphate fractions in the rhizosphere. Plant and Soil, 155 /156: 91–94.

    Google Scholar 

  109. Karunaratne, R.S., Baker, J.H. and Barker, A.V. 1986. Phosphorus uptake by mycorrhizal and nonmycorrhizal roots of soybean. Journal of Plant Nutrition, 9: 1303–1313.

    CAS  Google Scholar 

  110. Killham, K. and Firestone, M.K. 1983. Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant and Soil, 72: 39–48.

    CAS  Google Scholar 

  111. Koide, R., T. and Lu, X. 1992. Mycorrhizal infection of wild oats: Parental effects on offspring nutrient dynamics, growth and reproduction. In ‘Mycorrhizas in Ecosystems’ (eds. Read, D.J., Lewis, D.H., Fitter, A.H. and Alexander, I.J.) CAB International, Wallingford, U.K. pp. 55–58.

    Google Scholar 

  112. Koslowsky, S.D. and Boerner, R.E.J. 1989. Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L. (Poaceae). Environmental Pollution, 61: 107–125.

    PubMed  CAS  Google Scholar 

  113. Kothari, S.K., Marschner, H. and Römheld, V. 1991. Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in calcareous soil. Plant and Soil, 131: 177–186.

    CAS  Google Scholar 

  114. Krishna, K.R., Shetty, K.G., Dart, P.J. and Andrews, D.J. 1985. Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant and Soil, 86: 113–125.

    Google Scholar 

  115. Krishna, K.R., Suresh, H.M., Syamsunder, J. and Bagyaraj, D.J. 1981. Changes in the leaves of finger millet due to VA mycorrhizal infection. New Phytologist, 87: 717–722.

    CAS  Google Scholar 

  116. Kucey, R.M.N. and Paul, E.A. 1982. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated Faba beans (Vicia faba L.). Soil Biology and Biochemistry, 14: 407–412.

    Google Scholar 

  117. Kuiters, A.T. and Sarink, H.M. 1986. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology and Biochemistry, 18: 475–480.

    CAS  Google Scholar 

  118. Leake, J.R., Shaw, G. and Read, D.J. 1989. The role of ericoid mycorrhizas in the ecology of ericaceous plants. Agriculture, Ecosystems and Environment, 29: 237–250.

    Google Scholar 

  119. Leyval, C. and Berthelin, J. 1993. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with Rhizobacteria and Ectomycorrhizal Fungi. Biology and Fertility of Soils, 15: 259–267.

    CAS  Google Scholar 

  120. Li, X.-L., George, E. and Marschner, H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 136: 41–48.

    Google Scholar 

  121. Li, X.-L., George, E. and Marschner, H. 1991. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 119: 397–404.

    CAS  Google Scholar 

  122. Li, X.-L., Marschner, H. and George, E. 1991. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil, 136: 49–57.

    CAS  Google Scholar 

  123. Linderman, R.G. 1994. Role of VAM fungi in biocontrol. In ‘Mycorrhizae and Plant Health’ (eds. Pfleger, F.L. and Linderman, R.G.) APS Press, St. Paul, MN, pp. 1–26.

    Google Scholar 

  124. Lu, X. and Koide, R.T. 1994. The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytologist, 128: 211–218.

    CAS  Google Scholar 

  125. Lussenhop, J. and Fogel, R. 1993. Observing soil biota in situ. Geoderma, 56: 25–36.

    Google Scholar 

  126. Marschner, H. 1986. Mineral Nutrition of Higher Plants. Academic Press, New York, N.Y.

    Google Scholar 

  127. Marschner, H. and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89–102.

    CAS  Google Scholar 

  128. Marschner, H. and Römheld, V. 1983. In vitro measurement of root-induced pH changes at the soil-root interface: Effect of plant species and nitrogen sources. Zeitschrift für Pflanzenphysiologische, 111: 241–251.

    CAS  Google Scholar 

  129. Martin, F., Rubini, P.. Côte, R. and Kottke, I. 1994. Aluminium polyphosphate complexes in the mycorrhizal basidiomycete Laccaria bicolor: A 27A1 nuclear magnetic resonance study. Planta, 194: 241–246.

    CAS  Google Scholar 

  130. Martins, M.A. 1993. The role of the external mycelium of arbuscular mycorrhizal fungi in the carbon transfer process between plants. Mycological Research, 97: 807–810.

    Google Scholar 

  131. Mârtensson, A. and Rydberg, I. 1995. Variability among pea varieties for infection with arbuscular mycorrhizal fungi. Swedish Journal of Agricultural Research, 24: 13–19.

    Google Scholar 

  132. Nelsen, C.E. 1987. The water relations of vesicular-arbuscular mycorrhizal systems. In ‘Ecophysiology of VA mycorrhizal plants’ (ed. Safir, G.) CRC Press, Inc. Boca Raton, Florida, pp. 71–91.

    Google Scholar 

  133. Nelsen, C.E. and Safir, G.R. 1982. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta, 154: 407–413.

    CAS  Google Scholar 

  134. Nelson, S.D. and Khan, S.U. 1992. Uptake of atrazine by hyphae of Glomus vesiculararbuscular mycorrhizae and root systems of corn (Zea mays L.). Weed Science, 40: 161–170.

    CAS  Google Scholar 

  135. Newman, E.I. 1988. Mycorrhizal links between plants: Their functioning and ecological significance. Advances in Ecological Research, 18: 243–270.

    Google Scholar 

  136. Newman, E.I. and Eason, W.R. 1993. Rates of phosphorus transfer within and between ryegrass (Lolium perenne) plants. Functional Ecology, 7: 242–248.

    Google Scholar 

  137. Newman, E.I., Eason, W.R., Eissenstat, D.M. and Ramos, M.I.R.F. 1992. Interactions between plants: The role of mycorrhizae. Mycorrhiza, 1: 47–53.

    Google Scholar 

  138. Newsham, K.K., Fitter, A.H. and Watkinson, A.R. 1994. Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. Journal of Ecology, 82: 805–814.

    Google Scholar 

  139. Nilsson, M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia, 98: 1–7.

    Google Scholar 

  140. Nye, P.H. and Tinker, P.B. 1977. Solute Movement in the Soil-Root System. Univ. of California Press, Berkeley, CA.

    Google Scholar 

  141. O’ Keefe, D.M. and Sylvia, D.M. 1991. Mechanisms of the vesicular-arbuscular mycorrhizal plant-growth response. In ‘Handbook of Applied Mycology’ (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.R.) Marcel Dekker, Inc. New York, pp. 35–53.

    Google Scholar 

  142. Ocampo, J.A. 1986. Vesicular-arbuscular mycorrhizal infection of ‘host’ and ‘non-host’ plants: effect on the growth response of the plants and competition between them. Soil Biology and Biochemistry, 18: 607–610.

    Google Scholar 

  143. Pacheco, S. and Cambraia, J. 1992. Phosphorus uptake by mycorrhizal and nonmycorrhizal Pinus roots. Revista de Micribiologia, 23: 260–263.

    Google Scholar 

  144. Pearson, J.N. and Jakobsen, I. 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytologist, 124: 48 1488.

    Google Scholar 

  145. Pearson, J.N. and Jakobsen, I. 1993. The relative contribution of hyphae and roots to hosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 3213 and 33P. New Phytologist, 124: 489–494.

    CAS  Google Scholar 

  146. Pellissier, F. 1994. Effect of phenolic compounds in humus on the natural regeneration of spruce. Phytochemistry, 36: 865–867.

    CAS  Google Scholar 

  147. Peng, S.B., Eissenstat, D.M., Graham, J.H., Williams, K. and Hodge, N.C. 1993. Growth depression in mycorrhizal citrus at high-phosphorus supply–Analysis of carbon costs. Plant Physiology, 101: 1063–1071.

    PubMed  CAS  Google Scholar 

  148. Perry, D.A., Margolis, H., Choquette, C., Molina, R. and Trappe, J.M. 1989. Ectomycorrhizal mediation of competition between coniferous tree species. New Phytologist, 112: 501–511.

    Google Scholar 

  149. Pope, P.E., Chaney, W.R., Rhodes, J.D. and Woodhead, S.H. 1983. The mycorrhizal dependency of four hardwood tree species. Canadian Journal of Botany, 61: 412–417.

    Google Scholar 

  150. Rabatin, S.C. and Stinner, B.R. 1991. Vesicular-arbuscular mycorrhizae, plant, and invertebrate interactions in soil. In ‘Microbial Mediation of Plant-Herbivore Interactions’ (eds. Barbosa, P., Krischik, V.A. and Jones, C.G.) John Wiley & Sons, pp. 141–168.

    Google Scholar 

  151. Rabin, L.B. and Pacovsky, R.S. 1985. Reduced larva growth of two Lepiodoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. Journal of Economic Entomology, 78: 1358–1363.

    Google Scholar 

  152. Ramstedt, M. and Soderhall, K. 1983. Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Transactions of the British Mycological Society, 81: 157–161.

    CAS  Google Scholar 

  153. Read, D.J., Francis, R. and Finlay, R.D. 1985. Mycorrhizal mycelia and nutrient cycling in plant communities. In ‘Ecological Interactions in Soil: Plants, Microbes and Animals’ (eds. Fitter, A.H., Atkinson, D., Read, D.J. and Usher, M.B.) Blackwell Scientific Publications, Oxford, pp. 193–217.

    Google Scholar 

  154. Reeves, M. 1992. The role of VAM fungi in nitrogen dynamics in maize-bean intercrops. Plant and Soil, 144: 85–92.

    Google Scholar 

  155. Rice, E. 1984. Allelopathy. Academic Press, Orlando, FL.

    Google Scholar 

  156. Rickerl, D.H., Sancho, F.O. and Ananth, S. 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 23: 913–916.

    Google Scholar 

  157. Robson, A.D. and Abbott, L.K. 1989. The effect of soil acidity on microbial activity in soils. In ‘Soil Acidity and Plant Growth’ (ed. Robson, A.D.) Academic Press Australia, pp. 140–165.

    Google Scholar 

  158. Rosendahl, C.N. and Rosendahl, S. 1990. The role of vesicular-arbuscular mycorrhiza in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis, 9: 363–366.

    Google Scholar 

  159. Ruiz-Lozano, J.M., Azcón, R. and Gomez, M. 1995. Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses. Applied and Environmental Microbiology, 61: 456–460.

    PubMed  CAS  Google Scholar 

  160. Safir, G.R., Boyer, J.S. and Gerdemann, J.W. 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiology, 49: 700–703.

    PubMed  CAS  Google Scholar 

  161. Sanders, F.E. and Tinker, P.B. 1973. Phosphate flow into mycorrhizal roots. Pesticide Science, 4: 385–395.

    CAS  Google Scholar 

  162. Schönbeck, F. 1978. Effect of the endotrophic mycorrhizae on disease resistance of higher plants. Pflanzenkrankheiten and Pflanzenschutz, 85: 191–6.

    Google Scholar 

  163. Schreiner, R.P. and Koide, R.T. 1993. Streptomycin reduces plant response to mycorrhizal infection. Soil Biology and Biochemistry, 25: 1131–1133.

    CAS  Google Scholar 

  164. Schuler, R. and Haselwandter, K. 1988. Hydroxamate siderophore production by ericoid mycorrhizal fungi. Journal of Plant Nutrition, 11: 907–913.

    CAS  Google Scholar 

  165. Schüepp, H., Miller, D.D. and Bodmer, M. 1987. A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Transactions of the British Mycological Society, 89: 429–435.

    Google Scholar 

  166. Schweiger, P., Robson. A.D., Barrow, N.J. and Abbott, L.K. 1992. Root hair length determines beneficial effect of a Glomus sp. on shoot growth of some pasture species. In ‘The International Symposium on Management of Mycorrhizas in Agriculture, Horticulture and Forestry’ The University of Western Australia, Nedlands, Perth, Western Australia, 67.

    Google Scholar 

  167. Schwertmann, U. 1991. Solubility and dissolution of iron oxides. Plant and Soil, 130: 1–25.

    CAS  Google Scholar 

  168. Sharma, A.K., Srivastava, P.C., Johri, B.N. and Rathore, V.S. 1992. Kinetics of zinc uptake by mycorrhizal (VAM) and non-mycorrhizal corn (Zea mays L.) roots. Biology and Fertility of Soils, 13: 206–210.

    CAS  Google Scholar 

  169. Shilling, D.G., Dusky, J.A. and Mossier, M.A. 1992. Allelopathic potential of celery residues on lettuce. Journal of the American Society for Horticultural Sciences, 117: 308–312.

    Google Scholar 

  170. Siqueira, J.O., Nair, M.G., Hammerschmidt, R. and Safir, G.R. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Critical Review in Plant Sciences, 10: 63–121.

    CAS  Google Scholar 

  171. Siqueira, J.O., Safir, G.R. and Nair, M.G. 1991. VA-mycorrhizae and mycorrhiza stimulating isoflavonoid compounds reduce plant herbicide injury. Plant and Soil, 134: 233–242.

    CAS  Google Scholar 

  172. Smith, S.E. and Dickson, S. 1991. Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Australian Journal of Plant Physiology, 18: 637–648.

    Google Scholar 

  173. Smith, S.E., Robson, A.D. and Abbott, L.K. 1992. The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant and Soil, 146: 169–179.

    CAS  Google Scholar 

  174. Stevenson, F.J. 1986. Cycles of Soil. John Wiley & Sons, Inc. New York, N.Y.

    Google Scholar 

  175. Stockey, A. and Hunt, R. 1994. Predicting secondary succession in wetland mesocosms on the basis of autecological information on seeds and seedlings. Journal of Applied Ecology, 31: 543–559.

    Google Scholar 

  176. Sylvia, D.M. 1992. Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. In ‘Methods in Microbiology: Techniques for the Study of Mycorrhiza’ (eds. Norris, J.R., Read, D.J. and Varma, A.K.) Academic Press, New York, pp. 53–66.

    Google Scholar 

  177. Sylvia, D.M., Wilson, D.O., Graham, J.H., Maddox, J.J., Millner, P.P., Morton, J.B., Skipper, H.D., Wright, S.F. and Jarstfer, A.G. 1993. Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biology and Biochemistry, 25: 705713.

    Google Scholar 

  178. Tam, P.C.F. and Griffiths, D.A. 1993. Mycorrhizal associations in Hong-Kong Fagaceae V. The role of polyphenols. Mycorrhiza, 3: 165–170.

    CAS  Google Scholar 

  179. Tanesaka, E., Masuda, H. and Kinugawa, K. 1993. Wood degrading ability of Basidiomycetes that are wood decomposers, litter decomposers, or mycorrhizal symbionts. Mycologia, 85: 347–354.

    Google Scholar 

  180. Tarafdar, J.C. and Claassen, N. 1988. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils, 5: 308–312.

    CAS  Google Scholar 

  181. Tarafdar, J.C. and Marschner, H. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology and Biochemistry, 26: 387–395.

    CAS  Google Scholar 

  182. Thomson, C.J. and Bolger, T.P. 1993. Effects of seed phosphorus concentration on the emergence and growth of subterranean clover (Trifolium subterraneum). Plant and Soil, 156: 285–288.

    Google Scholar 

  183. Thus, H. 1994. The effect of phytotoxins on competitive outcome in a model system. Ecology, 75: 1959–1964.

    Google Scholar 

  184. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, N.J.

    Google Scholar 

  185. Tilman, D. and Downing, J.A. 1994. Biodiversity and stability in grasslands. Nature, 367: 363–365.

    Google Scholar 

  186. Tinker, P.B., Durall, D.M. and Jones, M.D. 1994. Carbon use efficiency in mycorrhizas: Theory and sample calculations. New Phytologist, 128: 115–122.

    CAS  Google Scholar 

  187. Tobar, R., Azcón, R. and Barea, J.M. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytologist, 126: 119–122.

    Google Scholar 

  188. Trappe, J.M., Molina, R. and Castellano, M.A. 1984. Reactions of mycorrhizal fungi and mycorrhizal formation to pesticides. Annual Review of Phytopathology, 22: 331–359.

    CAS  Google Scholar 

  189. Turnau, K., Kottke, I., Dexheimer, J. and Botton, B. 1994. Element distribution in mycelium of Pisolithus arrhizus treated with cadmium dust. Annals of Botany, 74: 137–142.

    CAS  Google Scholar 

  190. Uren, N.C. 1993. Mucilage secretion and its interaction with soil, and contact reduction. Plant and Soil, 156: 79–82.

    Google Scholar 

  191. Van Auken, O.W., Bush, J.K. and Diamond, D.D. 1994. Changes in growth of two Cagrasses (Schizachyrium scoparium and Paspalum plicatulum) in monoculture and mixture: influcence of soil depth. American Journal of Botany, 81: 15–20.

    Google Scholar 

  192. Van der Putten, W.H., Van Dijk, C. and Peters, B.A.M. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362: 53–55.

    Google Scholar 

  193. Wacker, T.L. and Safir, G.E. 1990. Effects of ferulic acid on Glomus fasciculatum and associated effects on phosphorus uptake and growth of asparagus (Asparagus officinalis L.). Journal of Chemical Ecology, 16: 901–909.

    CAS  Google Scholar 

  194. Wacker, T.L., Safir, G.R. and Stephens, C.T. 1990. Evidence for succession of mycorrhizal fungi in Michigan asparagus fields. Acta Horticulturae, 271: 273–279.

    Google Scholar 

  195. Wardle, D.A., Nicholson, K.S., Ahmed, M. and Rahman, A. 1994. Interference effects of the invasive plant Carduus nutans L. against the nitrogen fixation ability of Trifolium repens L. Plant and Soil, 163: 287–297.

    CAS  Google Scholar 

  196. Waters, J.R. and Borowicz, V.A. 1994. Effect of clipping, benomyl, and genet on ‘4C transfer between mycorrhizal plants. Oikos, 71: 246–252.

    CAS  Google Scholar 

  197. Watteau, F. and Berthelin, J. 1995. Microbial dissolution of iron and aluminium from soil minerals: Efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. European Journal of Soil Biology, 30: 1–9.

    Google Scholar 

  198. White, R.H. 1992. Acremonium endophyte effects on tall fescue drought tolerance. Crop Science, 32: 1392–1396.

    Google Scholar 

  199. Wigand, C. and Stevenson, J.C. 1994. The presence and possible ecological significance of mycorrhizae of the submersed macrophyte, Vallisneria americana. Estuaries, 17: 206–215.

    Google Scholar 

  200. Wilson, A.D. and Shure, D.J. 1993. Plant competition and nutrient limitation during early succession in the southern Appalachian mountains. American Midland Naturalist, 129: 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pedersen, C.T., Sylvia, D.M. (1996). Mycorrhiza: ecological implications of plant interactions. In: Mukerji, K.G. (eds) Concepts in Mycorrhizal Research. Handbook of Vegetation Science, vol 19/2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1124-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1124-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4660-4

  • Online ISBN: 978-94-017-1124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics